3 rd year Anatomy 3 Slides Sheet Handout Title: _____ Professor: Dr.Faraj Bustami Date: 7/4/2015 Sheet written by: Anatomy MD Class of 2018 Whitp://medstudygroup.weebly.com Price: 55 Design: Waseem Kamal The male reproductive system consists of a pair of testes, their excretory ducts, the accessory glands, and the penis (Fig. 14-1). The excretory ducts on each side are the epididymis, the vas deferens, and the ejaculatory duct. The accessory glands are a pair of seminal vesicles, a pair of bulbo-urethral glands, and the prostate gland. #### TESTES The testes are paired organs that produce the male germ cells, the *spermatozoa*, and the male sex hormones, the *androgens*. The testes are situated in the scrotum. In early fetal life, the testes are situated in the abdominal cavity, near the kidneys. As the fetus matures, the testes descend and, just before birth, pass through the inguinal canal to enter the scrotum. The descent of the testes from the abdominal cavity into the scrotum is important, because the development of spermatozoa (spermatogenesis) will take place normally only if the testes are at a temperature lower than that of the abdominal cavity. Each testis has a thick fibrous capsule, the tunica albuginea (Fig. 14-2), which thickens posteriorly to form the mediastinum testis. Extending from the inner surface of the capsule to the mediastinum is a series of fibrous septa that divide the interior of the organ into about two hundred and fifty lobules. Lying within each lobule are one to three coiled seminiferous tubules (Figs. 14-3 and 14-4; see Fig. 14-2). Each tubule is in the form of a loop, each end of which is continuous with a straight tubule. The straight tubules open into a network of channels within the mediastinum testis called the rete testis (see Figs. 14-2 and 14-5). Within each lobule, between the seminiferous tubules, are delicate connective tissue and groups of rounded or polyhedral interstitial cells that produce the male sex hormones. The rete testis is drained by efferent ductules into a long, much-coiled duct, the epididymis (see Fig. 14-2), that is situated on the posterior surface of the testis. #### Seminiferous Tubule The wall of the seminiferous tubule (Figs. 14-6–14-8) has a basement membrane lined with two types of cells: (1) numerous germinal cells, the *spermatogonia*, and (2) supporting cells, the Sertoli cells. Figure 1-1. A schematic diagram showing a "single chromosome" and a "duplicated chromosome" that is formed by DNA replication during meiosis I. #### 2. Normal somatic cells and primordial germ cells - -contain 46 single chromosomes and 2N amount of DNA; the chromosomes occur in 23 homologous pairs; one member (homologue) of each pair is of maternal origin and the other is of paternal origin. - * -The term "diploid" is classically used to refer to a cell containing 46 single chromosomes. - a. Pairs 1 to 22 are autosomal (non-sex) pairs. - b. Pair 23 consists of the sex chromosomes (XX for a female or XY for a male). #### 3. Gametes - -contain 23 single chromosomes (22 autosomes and 1 sex chromosome) and 1N amount of DNA. - -The term "haploid" is classically used to refer to a cell containing 23 single chromosomes. - a. Female gametes contain only the X sex chromosome. - b. Male gametes contain either the X or Y sex chromosome; therefore, the male gamete determines the genetic sex of the individual. -Meiosis is a specialized process of cell division that occurs only in the production of gametes. It consists of two divisions that result in the formation of four gametes, each containing half the number of chromosomes (23 single chromosomes) and half the amount of DNA (1N) found in normal somatic cells (46 single chromosomes, 2N). Hence, the purpose of the two meiotic divisions is twofold. - (1) to enable the members of the homologous chromosome pair to exchange blocks of genetic material (first meiotic division) - (2) to provide each germ cell with both a <u>haploid number of</u> chromosomes and <u>half the amount of DNA</u> of a normal somatic cell (second meiotic division) #### Consideration of Male Events #### A. Spermatogenesis: Formation of the male gamete - 1. Primordial germ cells arrive in the gonad of a genetic male (testes) at week 4 and remain dormant until puberty (they came from Yolk SAC) - 2. At puberty, primordial germ cells differentiate into spermatogonia, which undergo mitosis to provide a continuous supply of stem cells throughout the reproductive life of the male. - a. Spermatogonia begin to give rise to primary spermatocytes, which enter meiosis I by undergoing DNA replication. - b. Primary spermatocytes complete meiosis I to form two secondary spermatocytes. - c. The two secondary spermatocytes complete meiosis II to form four spermatids. Figure 1-2. Schematic drawing showing the events occurring during the first and second maturation divisions. A, The primitive female germ cell (primary oocyte) produces only one mature cell, the mature oocyte. B, The primitive male germ cell (primary spermatocyte) produces four spermatids, all of which develop into spermatozoa. "Mountamy #### B. Spermiogenesis - -is a series of maturational changes in spermatids that results in the formation of spermatozoa; these include formation of the acrosome, condensation of the nucleus, and formation of head, neck, and tail. - -the total time of sperm formation (from spermatogonia to spermatozoa) is 64 days. #### C. Capacitation of sperm - is a reversible process whereby freshly ejaculated sperm develop the capacity to fertilize a secondary oocyte. - -normally occurs in the female reproductive tract and takes 7 hours. - -involves the following: - 1. Unmasking of glycosyltransferases on the sperm cell membrane - 2. Removal of surface-coating proteins derived from seminal fluid #### Fig. 18.7 Spermiogenesis Spermiogenesis is the process by which spermatids, the gametes produced by meiotic division, are transformed into the potentially motile forms, the mature spermatozoa. This involves the following major stages: - 1. The Golgi apparatus elaborates a large vesicle, the acrosomal vesicle, which accumulates carbohydrates and hydrolytic enzymes. - 2. The acrosomal vesicle becomes applied to one pole of the progressively elongating nucleus to form a structure known as the acrosomal head cap. - 3. Both centrioles migrate to the end of the cell opposite to the acrosomal head cap and the centriole aligned parallel to the long axis of the nucleus elongates to form a flagellum which has a basic structure similar to that of a cilium (see Fig. 5.21). - 4. As the flagellum elongates, nine coarse fibrils, which may contain contractile proteins, become arranged longitudinally around the core of the flagellum. Further riblike fibrils then become disposed circumferentially around the whole flagellum. - 5. The cytoplasm migrates to surround the first part of the flagellum with the remainder of the flagellum appearing to project from the cell but in fact remaining surrounded by plasma membrane. This migration of cytoplasm thus concentrates mitochondria in the flagellar region. - 6. As the flagellum elongates, excess cytoplasm is cast off and phagocytised by the enveloping Sertoli cell. The mitochondria become arranged in a condensed, helical manner around the fibrils which surround the first part of the flagellum. The structure of fully formed spermatozoa varies in detail from species to species, but conforms to the basic structure seen in this diagram of a human spermatozoon. Figure 17-4 Structure of a spermatozoan. Spermatozoa that lie free within the lumina of the seminiferous tubules consist of a head, which contains the nucleus, and a tail which eventually will give motility to the free cell. The chromatin of the nucleus is very condensed and reduced in volume, providing the functionally mature sperm with greater mobility. The condensed form of chromatin also protects the genome while the spermatozoon is enroute to fertilize the female germ cell. The acrosomal cap covers the anterior twothirds of the nucleus and contains lysozomes that are important for penetration of the ovum during fertilization. The size and shape of the nucleus varies tremendously in different species. The sperm tail measures about 55 µm in length and consists of four regions; the neck, middle piece, principal piece and end piece. The structural details of the different segments are best observed with the electron microscope. The neck is that region where the head unites with the tail of the sperm and contains the connecting piece which joins the nine outer dense fibers of the sperm tail to the implantation fossa of the nucleus. The region of the connecting piece that joins the implantation fossa is expanded slightly and is called the capitulum. The middle piece extends from the neck of the sperm to the annulus and consists of the axoneme, the nine coarse fibers and the helical sheath of mitochondria. The principal piece is the longest portion of the tail and consists of the axoneme and the nine coarse fibers (2 + 9 + 9) enclosed by a sheath of circumferential fibers. The circumferential fibers join two longitudinal thickenings of this sheath, located on opposite sides. The end piece represents the shortest segment of the tail and consists only of the axoneme surrounded by the cell membrane. #### Spermatogenesis The term spermatogenesis is applied to the sequence of events by which spermatogonia are transformed into spermatical S(Fig. 14-9; see Fig. 14-8). The spermatogonia are stem cells situated along the basement membrane of the seminiferous tubule. They are large, rounded cells, and three types can be recognized, according to their nuclear appearance: type A dark (dark-staining nucleus), type A pale (pale-staining nucleus), and type B (spherical nucleus with clumps of chromatin along the nuclear membrane). Type A dark spermatogonia divide to maintain the numbers of spermatogonia and also to form some type A pale spermatogonia. Type A pale spermatogonia divide and differentiate into type B spermatogonia. After this division, type B spermatogonia divide by mitosis into primary spermatocytes. The latter cells migrate toward the middle zone of the seminiferous epithelium and then undergo meiotic division (the first meiotic division) into smaller secondary spermatocytes, each containing half the number of chromosomes of the primary cell (Fig. 14-10). The secondary spermatocytes soon divide (the second meiotic division) to form the smallest cells, the spermatids, which become embedded in the cytoplasm of the sides of the Sertoli cells. The spermatids now undergo a series of morphological changes leading to the formation of spermatozoa. (Spermiogenesis) Primary Spermatocytes Vacuole the spenmatogenic Chromatin STAGE I V Spermaiozou STAGE II Ar. Buntaine Protection 1999 FT Report Spermatogenia cell + Columna cell extends brown the basement membrane to the lumer of the ribile Prominent indented Prominent indented Mucleulus Microfilaments of microfilam Sertoli cells in seminiterous tubules are (targets of FSH) The Sertoli cells primarily sustain spermatogenesis, as well as 1) form junctions between adjacent cells which are a barrier between interstitial fluid and tubule lumen, 2) produce androgen binding protein (ABP) and secrete it into the lumen for concentrating testosterone in the tubule, 3) and sperm viability by maintaining high [K] and [HCO₃] in luminal fluid, and 4) synthesize estradiol and inhibin. Both < FSH are required for Spermatogenesis > LH effects are mediated by testosterone > So only < testosterone? act directly on Seminiferous tubules FSH Fig. 14-9. Sertoli cell and the part it plays in spermatogenesis. Note the tight junctions situated near the base of the cell that separate the spermatogonia from the more superficial spermatocytes and spermatids. The arrows passing upward from the capillary indicate the pathways taken by nutrients and hormones. Remember 1) The Sertoli cells Provide nutrients to the differentiating sperms (which are isolated from the 6100d stream) - arrows in the above diagram ② Sertoli cells form tight junctions with each other -> Creating a barrier between the testis and blood stream called the BLOOD TESTIS BARRIER - imparts selective fermeability noxious substances that might damage the sertoli cells secrete an aqueous fluid into the lumen of the seminiferous rubiles which belp to transport the sprins into the epidiclymis - -Testosterone is the major androgen synthesized and secreted by the Leydig cells. - -Leydig cells do not contain 21β-hydroxylase or 11β-hydroxylase (in contrast to the adrenal cortex) and do not synthesize glucocorticoids or mineralocorticoids. LH increases testosterone synthesis by stimulating cholesterol desmolase -Accessory sex organs contain 5α -reductase, which converts testosterone to dihydrotestosterone (the active form). -5α-reductase inhibitors (finasteride) may be used in the treatment of benign prostatic hypertrophy because they block the activation of testosterone to dihydrotestosterone in the prostate. - -Testosterone is the major androgen synthesized and secreted by the Leydig cells. - -Leydig cells do not contain 21β-hydroxylase or 11β-hydroxylase (in contrast to the adrenal cortex) and do not synthesize glucocorticoids or mineralocorticoids. LH increases testosterone synthesis by stimulating cholesterol desmolase -Accessory sex organs contain 5α -reductase, which converts testosterone to dihydrotestosterone (the active form). -5α-reductase inhibitors (finasteride) may be used in the treatment of benign prostatic hypertrophy because they block the activation of testosterone to dihydrotestosterone in the prostate. FIGURE 10-6. Control of gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) secretion in males. Bustami. #### Regulation of testes (Figure 7-17) #### 1. Hypothalamic control-GnRH -Arcuate nuclei of the hypothalamus secrete GnRH into hypophysial-portal blood. GnRH stimulates the anterior pituitary to secrete FSH and LH. #### 2. Anterior pituitary—FSH and LH - -FSH acts on the Sertoli cells to maintain spermatogenesis. The Sertoli cells also secrete inhibin, which is involved in feedback inhibition of FSH secretion. - -LH acts on the Leydig cells to promote testosterone synthesis. Testosterone acts via an intratesticular paracrine mechanism to mediate the effects of FSH on spermatogenesis in the Sertoli cells. #### 3. Negative feedback control—testosterone and inhibin - -Testosterone inhibits secretion of LH by inhibiting release of GnRH from the hypothalamus and by directly inhibiting release of LH from the anterior pituitary. - -Inhibin (produced by Sertoli cells) inhibits secretion of FSH from the anterior pituitary. ### MALE REPRODUCTIVE HORMONES Spermatic Cord -SH) > Stimulates (Sertali cell) to Produce Stem cell factor > interacts with a specific receptor on the spermatogonium (20) This factor (Stimulates mitosis) and (inhibits apoptosis (Programmed cell death) of spermatogonia, thereby increasing their number Activing - Protein hormone produced by (Sertoli cell) Stimulates spermatogonia to form Primary Spermntocytes Sertoli cells) stimulated by FSH to Synthesize estradiole from testosterone (produced by leydig cells) FSH stimulates the production of (androgen binding Protein (ABP) -> complexed with high affinity to testosterone, DHT & estradiale This Protein concentrate the (sex steroids) in the sertali cells to be used during Spermatogenesi's I Germ cells lack androgen receptors !!! testosterone + other sex steroids bound to ABP can enter the germ cells by endoytosis & ABP is also secreted into the tubular fluid = Keep high concentration of testosterone OBustam. Local Seedbrok loops operate between the Sertoli cells Within leydig cells Peritubular cells > Stimulate inhibin B & estradial) inhibin feedback to BLOCK AROMATASE enzyme necessary for estradiole synthesis Testosterane, from the leydig cells stimulate inhibin Secretion by the Serboli cells Estradiole) from the Sentoli cells feedback Negatively to block testosterone synthesis in the leydig cells Testosterone rolso Stimulates the differentiation of Peritubular cells Secrete Proteins similar to sertali celle ?? ### **Uterus** OBustami. #### Synonyms 1. Womb; 2. Hystera (G). Compare with the terms hysterotomy and hysterectomy. #### **Definition** Uterus is a child-bearing organ in females, situated in the pelvis between bladder and rectum. Though hollow it is thick-walled and firm, and can be palpated bimanually during a PV (per vaginum) examination. #### Shape and Size It is piriform in shape, being flattened from before backwards. The upper expanded part is called the body, and the lower cylindrical part, the cervix. The circular constriction between the body and cervix corresponds to internal os. This constriction is often named as isthmus, although in strict sense the 'isthmus' is formed by the upper 1/3 (nearly 0.8 cm) of cervix which resembles uterus in its structure and forms the 'lower uterine segment' of the obstetricians. It is so named because during second month of pregnancy, it is gradually taken up into the body of the uterus. During labour the 'lower segment' becomes stretched and elongated to form the 'conducting' part of the uterus. Whereas the 'upper segment' forms the propulsive part. Uterus is 3 inches long, 2 inches broad and 1 inch thick. It weighs about 30-40 g. #### Communications Superiorly, uterus communicates on each side with the uterine tube, and inferiorly, with the vagina. #### Normal Position and Angulations Normally the uterus is anteverted and anteflexed. Forward angulation between the cervix and vagina is called the angle of anteversion (about 90 degrees). Similarly, the slight forward angulation between the body and cervix is called the angle of anteflxion (120-125 degrees). Roughly, the long axis of uterus corresponds to the axis of the pelvic inlet, and the axis of vagina, to the axes of the pelvic cavity and pelvic outlet. Fig. 327 Angulations of the uterus and vagina (A), and their axes (B). #### **Gross Features** As already indicated the uterus is divided into a body (upper 2/3, or 2 inches) and a cervix or neck (lower 1/3, or 1 inch). the fundus of uterus after pulling it backwards. Note the attachments of the uterine tube, round ligament of uterus and the ligament of ovary to the superior angle of uterus. #### Relations of the uterus #### A. Body of Uterus The body has: (a) a fundus; (b) two surfaces, anterior or vesical and posterior or intestinal; and (c) two lateral borders. The fundus is convex like a dome. It is covered with peritoneum and is directed forwards when the bladder is empty. The fertilized ovum is implanted usually in the posterior wall of fundus. Anterior or vesical surface is flat and related to urinary bladder. It is covered with peritoneum and forms the posterior (superior) wall of the vesicouterine pouch. Posterior or intestinal surface is convex and related to terminal coils of ileum and sigmoid colon. It is covered with peritoneum and forms the anterior wall of the rectouterine pouch. Each lateral border is rounded and convex. It provides attachment to the broad ligament of uterus which extends to the lateral pelvic wall. Uterine tube opens into the uterus at the upper end of this border. Anteroinferior to the tube the round ligament of uterus is attached, and posteroinferior to the tube the ligament of ovary is attached. Uterine artery ascends along the lateral border of uterus between the two layers of the broad ligament. #### B. Cervix of Uterus Cervix is the lower, cylindrical part of the uterus which is less mobile than the body. It (is about 2.5 cm long, and is slightly wider in the middle than at either end. The lower part of cervix projects into the anterior wall of the vagina which divides it into the supravaginal and vaginal parts. The supravaginal part of cervix is related; (a) anteriorly to bladder; (b) posteriorly to rectouterine pouch with intestinal coils, and the rectum; and (c) on each side, to ureter and uterine artery embedded in parametrium. The, fibrofatty tissue between the two layers of the broad ligament and below it is called parametrium; it is most abundant near the cervix and vagina. The vaginal part of cervix projects into the anterior wall of vagina forming the vaginal fornices. Cervical canal opens into the vagina by an opening called the external os. In a nulliparous woman the external os is small and circular. However, in multiparous women, the external os is bounded by the anterior and posterior lips, both of which are in contact with the posterior wall of vagina. The cervical canal is fusiform in shape, being flattened from before backwards. It communicates above with the uterine cavity through the internal os, and below with the vaginal cavity through the external os. The mucosal folds in the anterior and posterior walls of the canal resemble the branches of a tree (arbor vitae uteri) which interlock with each other and close the canal. (2) Multipara (transverse slit) Posterior lip of cervix Fig. 1.6 Coronal section of female pelvis viewed from in front. Broad ligaments are two broad folds of peritoneum which suspend the uterus to the lateral pelvic wall. When bladder is full, the ligament has anterior and posterior surfaces and a free upper border; the other three borders (inferior, medial and lateral) are attached uterine tube to pelvic floor, uterus and lateral pelvic wall. Broad ligament is divided into: (a) mesosalpinx, between the tube and ovarian ligament; (b) mesometrium, below the ovarian ligament; (c) infundibulopelvic ligament (p. 274); and (d) mesovarium (p. 274) Broad ligament contains the following structures (Fig. 328). - 1. One tube. Uterine tube in the free upper border. - Two ligaments. (a) Round ligament of uterus bulges out the anterior layer. (b) Ligament of ovary bulges out the posterior layer. - 3. Two vessels. (a) Uterine vessels near the uterus. (b) Ovarian vessels in the infundibulopelvic ligament. - Two nerves: (a) Uterovaginal plexus. (b) Ovarian plexus. - 5. Two embryological remnants. (a) Epoophoron and the duct of epoophoron (Gartner's duct). (b) Paroophoron. - 6. Two miscellaneous structures. (a) Lymphatics and lymph nodes. (b) Fibroareolar tissue or parametrium. #### Arterial Supply Uterus is supplied: (1) chiefly by the two uterine arteries which are markedly enlarged during pregnancy; and (2) partly by the ovarian arteries. Uterine artery is a branch from the anterior division of internal iliac artery. First it runs medially towards the cervix, crossing the ureter above the lateral fornix of vagina and 2 cm lateral to cervix. Then the artery ascends along the side of the uterus, with a tortuous course. Finally, it runs laterally towards the hilus of the ovary, and ends by anastomosing with the ovarian artery. The tortuosity of the artery permits expansion of uterus during pregnancy. Uterine artery supplies: (1) uterus, by helicine arteries; (2) vagina, by the anterior and posterior azygos arteries of vagina; (3) medial 2/3 of uterine tube; (4) ovary; (5) ureter; and (6) contents of the broad ligament. #### Venous Drainage Veins form a plexus along the lateral border of the uterus. The plexus drains through the uterine, ovarian and vaginal veins into the internal iliac veins. #### Arterial Supply 1. Ovarian artery arises from the abdominal aorta just below the renal artery. It descends over the posterior abdominal wall and enters the suspensory ligament of ovary. It sends branches to the ovary through the mesovarium, and continues medially through the broad ligament of uterus to anastomose with the uterine artery. In addition to ovary, the ovarian artery also supplies the uterine tube, side of the uterus and the uteter. Uterine artery gives additional branches which reach the ovary through the mesovarium. The arteries passing through the mesovarium and medulla of overy have a convoluted course, and become spiral in the cortex. #### Venous Drainage Veins emerge at the hilus and form a pampiniform plexus on the artery. The plexus condenses into a single vein near the polyicinlet. The ovarian vein ascends on the posterior abdominal wall and drains into the inferior vena cava on right side and into the left renal vein on the left side. ### Supports of Uterus Uterus is a mobile organ which undergoes extensive changes in size and shape during reproductive period of life. It is supported and prevented from sagging down by a number of factors which are chiefly muscular and fibromuscular. Kustam. #### Classification - I. Primary Supports - A. Muscular or active - 1. Pelvic diaphragm - 2. Perineal body - 3. Urogenital diaphragm - B. Fibromuscular or mechanical - 1. Uterine axis - 2. Pubocervical ligament - 3. Transverse cervical ligament - 4. Uterosacral ligament - 5. Round ligament of uterus. Role of Individual Support 1) Pelvic diaphragm (Fig. 239) It supports the pelvic viscera and resists any rise in the intra-abdominal pressure. The pubococcygeous part of levator ani (Chapter 58) is partly inserted into the perineal body between the vagina and rectum. Some of these fibres also form a supporting sling and a sphincter for the vagina, and so indirectly for the uterus and bladder. If pubococcygeous is torn during parturition, the vaginal support is lost, and it tends, to sink into the vestibule along with the uterus, thus causing the prolapse of uterus. The anterior vaginal wall is poorly supported by the muscle, and therefore is more liable to prolapse than the posterior wall. The efficacy of levator ani as a support is also lost when the perineal muscles are torn, which normally fix the perineal body and make it an anchor for the levator ani. Transverse Mackenrodt) Cervical 27 Ligaments (of These are also known as: (a) lateral cervical ligaments; (b) cardinal ligaments; (c) Macken- rodt's ligaments (d) paracervical ligaments; (e) retinacula uteri; and (f) sustentaculum of Bonny. They are fan-shaped condensations of the pelvic fascia on each side of cervix above the levator ani and around the uterine vessels. They connect the lateral aspects of cervix and upper vaginal wall to the lateral pelvic wall I inch ventral to ischial spine. They act as a 'hammock' in the support of the uterus. Fig 331 Condensations of pelvic fascia forming the supports of the pelvic organs. (A) Superior view of the ligamentous supports of uterus and rectum. (B) Coronal view of the right cardinal ligament. Fig. 330 Anteversion of uterus is maintained by the couple of forces provided by the pulls of uterosacral and round ligaments of uterus. #### 4. Uterine Axis The anteverted position of uterus itself pri vents the organ from sagging down through the vagina. Any rise in intra-abdominal pressu tends to push the uterus against the bladd and pubic symphysis, which further accentuate anteversion. The angle of anteversion is main tained by the uterosacral and round ligament Fig. 333 Relations of vagina. (A) Left view of a sagittal section of female pelvic organs after removing the body of uterus; and (B) a coronal section of the female pelvis through the vagina with uterine cervix. #### Nerve Supply 1. Lower 1/3 of vagina is pain sensitive and is supplied by pudendal nerve through the inserior rectal and posterior labial branches of perineal nerve. 2. Upper 2/3 of vagina is pain insensitive and is supplied by sympathetic $(L_{1,2})$ and parasympathetic (S2,3) nerves derived as vaginal nerves (accompanying vaginal arteries) from the inferior hypogastric and uterovaginal plexuses. Sympathetic nerves are vasoconstrictor and parasympathetic nerves vasodilator. ### VAGINA Ant. wall of Vagina - 3" (8 cm) Post.: " = 4" (10 cm) IMPA -> related to base of I) suppor } separated from rectum Yes by the ponch of Pougles middle } separated from rectum by loose c. T lower } separated from and cand yes by the periment body Hiddle of places the wrogenital disphrage lowers of below which it is related to bulb of vestional with the crosses bulb of vestional of bulbos pongiosus bulb of vestional of greater vestibula @ Barthalin Gland & greater vestibular * lymph drainage upper 1/3 - Ex1. iliac L.N middle to - int. " group or superficial lower to - medial group or superficial inguinal L.N. # Uterine Tubes (Full opinn tubes) Fig. 314 The parts, relations and blood supply of the uterine tube. #### Situation These are situated in the free upper margin of the broad ligament of uterus. #### Dimensions Each tube is about 10 cm (4 in.) long. The diameter is about 3 mm at abdominal ostium, 4 mm at ampulla, 2 mm at isthmus, and 1 mm at the uterine (intramural) part. #### Communications Medially, the tube opens into the superior angle of the uterine cavity by a narrow (1 mm) Herine ostium. Laterally, it opens into the peritoneal cavity close to the ovary by a wider (3 mm) abdominal Citium. **Parts** 1. Infundibulum (fimbriated end) is the trumpet-shaped expansion of the lateral end of tube, which opens into the peritoneal cavity by abdominal ostium, and is broken up into a number of finger-like processes, called the fimbriae. One of these fimbriae is longer and more deeply grooved than the others, and is attached to the tubal pole of the ovary; it is known as ovarian fimbria. The fimbriae are extensions of the mucosal folds. Their outer surface is covered by peritoneum but the inner surface is lined by ciliated columnar epithelium which guides the ovum to the ostium and then to the interior of the tube. Infundibulopalvic ligament Fundus of uterus Ovarian artery Uterine tube -Vesicular appendix ... Fimbria Broad ligament uterine artery __External os 2. Ampulla - is the medial continuation of the infundibulum It is thin-walled, dilated of forms about lateral 3/3 of the tube. It wishes over the upper pale of the overy 3. Isthmus - Succeeds the ampulla, it is narrow, cord-like & forms about medial /3 of the tube 4. Uterine (interstitual or intramural) part of the uterine tabe is about I cm long of I mm in diameter of lies within the Will of the uterus of opens into the superior angle of the uterine cavity by a narrow uterine ostium Notice - the infundibulum Projects beyond the free margin of the broad ligament. Blood supply - uterine artery (from internal iliac a) supplies about medial 2/3 & overian a. about Intent) 3 % the uterine tube ### Ovaries #### Position (Orientation) The position of the ovary is variable. In nulliparous women, its long axis is nearly vertical, so that the ovary is usually described to have an upper pole and a lower pole. However, in multiparous women, the long axis becomes horizontal; so that the upper pole points laterally and the lower pole medially. Fig. 313 Superior view of a horizontal section through the right ovarian fossa and the lateral part of the broad ligament of uterus. #### Arterial Supply 1. Ovarian artery arises from the abdominal aorta just below the renal artery. It descends over the posterior abdominal wall and enters the suspensory ligament of ovary. It sends branches to the ovary through the mesovarium, and continues medially through the broad ligament of uterus to anastomose with the uterine artery. In addition to ovary, the ovarian artery also supplies the uterine tube, side of the uterus and the ureter. #### Situation Each ovary lies in the ovarian fossa lateral pelvic wall. The fossa is bounded: (a) anteriorly by the obliterated umbilical artery; and (b) posteriorly by the ureter and internal iliac artery (Fig. 311). The ovary is attached to the posterior or upper layer of the broad ligament of uterus. and lies just below and behind the lateral ampullary) part of the uterine tube, on each side of the uterus. #### A. Peritoneal Relations Ovary is almost entirely covered with peritoneum, except along the mesovarian (anterior) border where the two layers of the covering peritoneum are reflected on to the posterior layer of the broad ligament of uterus. Thus the ovary is connected to the posterior layer of the broad ligament by a short fold of peritoneum, called mesovarium. The squamous epithelium of the mesovarium is continuous with the cubical epithelium of the ovary. The mesovarium transmits the vessels and nerves to and from the ovary (Fig. 313). The lateral part of the broad ligament of uterus, extending from the infundibulum of the tube and upper pole of ovary to the external iliac vessels, forms a distinct fold, known as the suspensory ligament of ovary (infundibulopelvic ligament). It contains the ovarian vessels and nerves. FIGURE 18-8. Features of female external genitalia. Labia majora and minora have been separated to show the deeper structures. Vulva is the external genital organ of the female 1. labia majora > 2 Prominent folds of skin filled with fat. The cleft between them is called Pudendal cleft 2. habia minora - 2 thin folds of skin (no fat) present between the 2 labia majore - the interval between them is called the Vestibule of the Vagina 3. Clitoris - Resembles the Penis in Structure but is devoid of Urethre. The body of the Clitoris is made up of 2 corpora cavernosa, the corpus spongiosum is absent 4. Within the vestibule of the vaginz: a. External urethral orifice - lies immediately ANTERIOR to unginal orifice but 2.5 cm behind the Chitoris b. vaginal orifice (introitus) - lies in the posterior part of the vestibule of is partly closed in the virgin by the hymen which is a perforated fold of mucous membrane the vaginal orifice of overlapped by the bulb of the vestibule. Its duck opens on the side of the lymen Fig. 345 The levator ani, coccygeus and piriformis in a female shown on the left side. #### PELVIC DIAPHRAGM The pelvic diaphragm is formed by the important levatores ani muscles and the small coccygeus muscles and their covering fasciae (Fig. 6-13). It is incomplete anteriorly to allow passage of the urethra in males and the urethra and the vagina in females. #### Levator Ani Muscle The levator ani muscle is a wide thin sheet that has a linear origin from the back of the body of the pubis, a tendinous arch formed by a thickening of the pelvic fascia covering the obturator internus, and the spine of the ischium (Fig. 6-13). From this extensive origin, groups of fibers sweep downward and medially to their insertion (Fig. 6-14), as follows: 1. Anterior fibers: The levator prostatae or sphincter vaginae form a sling around the prostate or vagina and are inserted into a mass of fibrous tissue, called the perineal body, in front of the anal canal. The levator prostatae support the prostate and stabilize the perineal body. The sphincter vaginae constrict the vagina and stabilize the perineal body. - 2. Intermediate fibers: The puborectalis forms a sling around the junction of the rectum and anal canal. The pubococcygeus passes posteriorly to be inserted into a small fibrous mass, called the anococcygeal body, between the tip of the coccyx and the anal canal. - 3. Posterior fibers: The iliococcygeus is inserted into the anococcygeal body and the coccyx. - · Action: The levatores ani muscles of the two sides form an efficient muscular sling that supports and maintains the pelvic viscera in position. They resist the rise in intrapelvic pressure during the straining and expulsive efforts of the abdominal muscles (as occurs in coughing). rectum puborectalis deep anococcygeal body perineal body superficial subcutaneous anal canal Е defection of delivary (2nd stage) Figure 6-14 Levator ani muscle (dark brown) and coccygeus muscle (light brown) seen on their inferior aspects. Note that the levator ani is made up of several different muscle groups. The levator ani and coccygeus muscles with their fascial coverings form a continuous muscular floor to the pelvic, known as the pelvic diaphragmy. Fig. 291 The perincal body and the anococcygeal 4. Perineal body is one of the chief supports to the pelvic organs, like the uterus. In order to avoid its damage in a perineal tear, an episiotomy is often done in the primiparas. A damage to perineal body often leads to prolapse of uterus and other pelvic organs. #### 5. Perineal Body The perineal body, or the central point of perineum, is a fibromuscular node situated in the median plane, about 1.25 cm in front of the anal margin and close to the bulb of penis. Nine muscles (three unpaired-external anal sphincter, bulbospongiosus and the unstriped fibres of the longitudinal muscle coat of rectal ampulla and anal canal; and three paired-superficial transversus perinei, deep transversus perinei, and levator ani) converge and interlace in the body (Fig. 291). Perineal body is very important in females for the support of the pelvic organs. Its involvement in perineal tear during parturition may result in prolapse of the urinary bladder, uterus, ovaries and even rectum. Notice of the median part of the anal triangle is occupied by lower part of anal canal surrounded by its sphincters. The Perineal body lies in front while the ano-coccygeal ligament lies behind the anal canal to The lateral parts of this region one occupied by ischin motal from Posso Figure 3-54. The diamond-shaped perineum, extending from the pubic symphysis to the coccyx. Note that a transverse line joining the anterior ends of the ischial tuberosities divides the perineum into two unequal triangular areas, the urogenital triangle anteriorly and the anal triangle posteriorly. The midpoint of the transverse line indicates the site of the perineal body (central perineal tendon). Figure 3-55. The boundaries of the perineum. Observe that the angles of the diamond-shaped region are at the arcuate pubic ligament, the tip of coccyx, and the ischial tuberosities. Fig. 299 Arrangement of the superficial and deep fasciae in the urogenital region in a male. (A) Sagittal section; and (B) coronal section. Rupture of spongy utethri? Extravasated wrine spreads down- wards deep to the membranous layer of superbeial fascia, and fills first the superficial perineal space and then the scrotum, penis and lower Part of anterior abdominal wall. It is prevented om going to the ischiorectal fossa or the thigh UROGENITAL REGION (triangle) by the firm attachment of the membranous ascia to their boundaries (p. 261). - It is the space lying between the sides of the pubic arch. - It is filled with muscles and fascia forming the urogenital; diaphragm. - The fascia covering the inferior surface of the urogenital diaphragm is called the perineal membrane (inferior fascia of urogenital diaphragm). - The fascia covering its superior surface is called superior fasciaof urogenital diaphragm. - In the erect posture the perineal membrane is placed nearly horizontal having upper and lower surfaces. - The perineal membrane divides the urogenital region into 2 pouches (or spaces): - 1) Superficial perineal pouch : below the membrane. - 2) Deep perineal pouch : above the membrane. (towards the pelvic cavity). ## Deep Perinent Pouch (space) - It is a closed space between the Perineal membrane below & the superior fascia of wrogenital diaphragm above - It is limited on each side by sides of the pubic such Boundaries - Roof: sup. fascia of Urogenital diaphragm floor & Perincul membrane Anterior of posterior borders : the roof fuses with the floor (closed) Contents 1. Membranous part of Urethra Surrounded by the Sphinder Urethrae muscle (voluntary) 2. 2 bulbourethral glands (in 8) > their ducts Pierce the perineal membrane & open into spongy wrethra 3. deep transverse perinei muscles 4. Dorsal merve of penis (from pudendal nerve) 5. Internal pudendal vessels · Pudendal nerve a branch of Sacral Plexus Sz, 3,4 leaves pelvis through greater sciate foramen Crosses the back of the Sacrospinous ligamene to enter the lesser sciatic foramen where the pudendal canal begins Passes through the Perdendal count in the lateral wall of ischierectal fossa. Where it gives its terminal branches Perineal nerve) gives scrotal or labial branches as well as musculm branches to all Perinent muscles. dorsal nerve so /Penis or cliteris FIGURE 18–12. Part A shows injection sites for local anesthesia by perinal infiltration. A indicates median; B, mediolateral; and C, lateral episiotomy. Part B shows initial incision for a median episiotomy. FIGURE 18-13. Various types of episiotomy and the muscles of the pelvic floor involved. A indicates lateral; B, mediolateral; C, median episiotomy; and D, the site of so-called SCHUCHARDT, or paravaginal incision. FIGURE 18–14. A, Birth of the head with vulva completely distended. B, Birth of head continues with mouth appearing over the perineum. Figure 3-74. A, Distribution of the pudendal and ilioinguinal nerves to the female perineum. B, The pudendal nerves may be blocked with anesthetic. The needle is inserted toward the ischial tuberosity, where the pudendal nerve emerges from the pudendal canal. The needle is guided by the digits in the vagina until its tip is posterior and inferior to the ischial spine where the pudendal nerve lies. The injection from the upper needle blocks (anesthetizes) the ilioinguinal nerve and its labial branches, which supply the vulva (see Fig. 3-72).