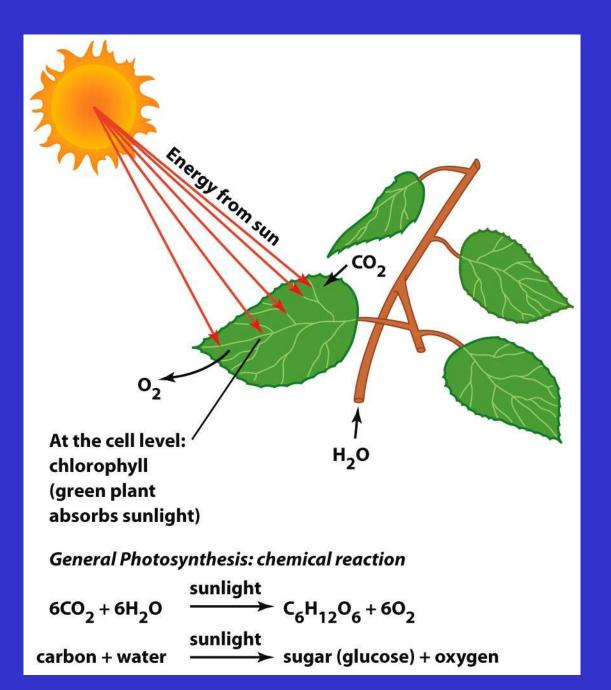
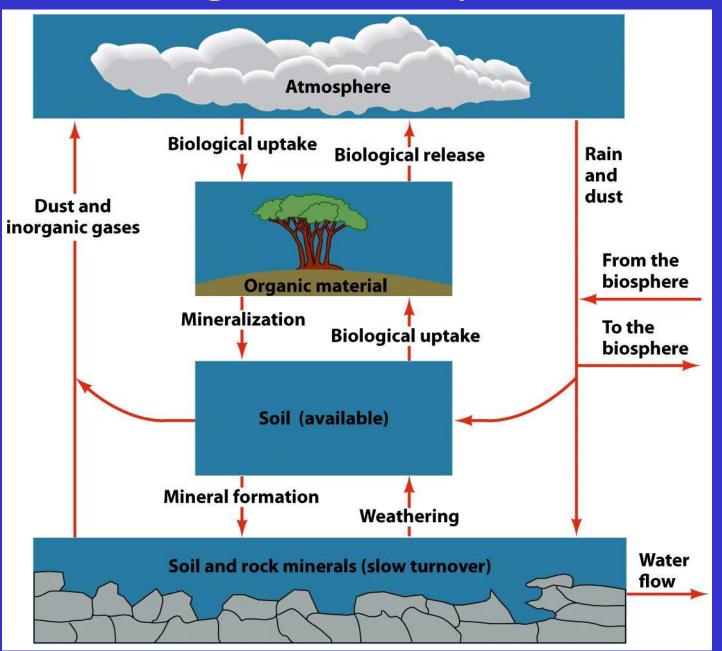
# Chapter 5: The Chemistry of Life



# Biogeochemical Cycles


- A biogeochemical cycle is the complete path a chemical takes through the four major components of Earth's system.
  - Atmosphere
  - Hydrosphere
  - Lithosphere
  - Biosphere

#### Chemical Reactions


- A process in which new chemicals are formed from elements and compounds that undergo a chemical change.
  - E.g. rain water and carbon dioxide
  - $-H_2O + CO_2 \rightarrow H_2CO_3$
  - Weak carbonic acid reacts w/ rock and soil

#### Chemical Reactions

- Another example
  - Chemical reaction for photosynthesis
  - $-6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$
- The two reactions start with same compounds but end up with very different products.



#### **Biogeochemical cycles**



#### Chemical Reactions

- Chemicals in the four major components have different average storage time
  - Long in rocks
  - Short in the atmosphere
  - Intermediate in the hydrosphere and biosphere

# Biogeochemical Cycles and Life

- Of the 103 known elements only 24 required for life.
  - Macronutrients- required in large amounts
    - Big six = C, H, N, O, P, S
  - Micronutrients- required either in small/ moderate amounts
- For life to persist elements must be available at right time, right amount, and right concentrations relative to one another.

When this does not happen chemical can become a **limiting factor** 

| 1<br><b>H</b><br>Hydrogen | A               |                | numb<br>vironn                      |          |                 |                 | *         | in t       | he Ear        | th`s cr |         | ındant         |           |                  |                  | , in the second | He<br>Helium |
|---------------------------|-----------------|----------------|-------------------------------------|----------|-----------------|-----------------|-----------|------------|---------------|---------|---------|----------------|-----------|------------------|------------------|-----------------|--------------|
| 3                         | 4               |                | important trace Ca — Element symbol |          |                 |                 |           |            |               |         |         |                | 6         | 7                | 8                | 9////           | 10           |
| Li                        | Be <sub>x</sub> | ele            | ments                               | ·—       | → 🗆             | J               |           |            |               |         |         |                | C         | N                | 0                | 46X             | Ne           |
|                           | Beryllium       |                |                                     |          | C               | alçiun          | ١         |            |               |         |         | Boron/         | Carbon    | Nitrogen<br>15   | 0xygen           | Fluorine        | Neon<br>18   |
|                           | 12 *            |                |                                     |          |                 | 1               |           |            |               |         |         | AV             | Si        | P                | S                |                 | Ar           |
| Na                        | Mg              |                |                                     |          |                 | Name            |           |            |               |         |         |                | 00//      |                  |                  | ////X           | 1000 E       |
| Sodium<br>19 *            | -ium<br>20 *    | 21             | 22                                  | 23////   | 24              | 25              | 26 *      | 21////     | 28            | 29      | 30      | Aluminum<br>31 | 32        | Phosphorus<br>33 | Sulfur<br>34//// | Chlorine<br>35  | Argon<br>36  |
| K                         | Ca              | Sc             | Ti                                  |          | Cr.             | Mn              | Fe        | Co         | Ni            | Cu      | Zn      | Ga             | Ge        | As               | Se               | Br              | Kr           |
| Potassium                 |                 |                | Titanivm                            | Varodian | 00 \            |                 | 00        | Cobati     | O X<br>Nickel | Copper  | Zinc    |                | Germanium |                  | Selenium         |                 |              |
| 37                        | 38              | 39             | 40                                  | 41       | 42              | 43              | 44        | 45         | 46            |         | 48      | 49             | 50        | 51               | 52               | 5)////          | 54           |
| Rb                        | Sr              | Y              | Zr                                  | Nb       | Mo              | Tc              | Ru        | Rh         | Pd            | Ag      | Cd      | In             | Sn.       | Sb               | Te               |                 | Xe           |
| Rubidium                  | Strontium       | Yttrium        | Zirconium                           | Niobium  | Molyb-<br>denum | Technet<br>-ium | Ruthenium | Rhodium    | Palladivm     | X       | Cadmium | Indium         |           | Antimony         | Tellurium        | lodine          | Xenon        |
| 55                        | 56              | 57             |                                     | 73       | 74              | 75              | 76        | 77         | 78            | 79      | 80      | 81             | 82        | 83               | 84               | 85              | 86           |
| Cs                        | Ba              | La             | Hf                                  | Ta       | W               | Re              | Os        | lr         | Pt            | Αu      | Hg      | TI             | Pb        | Bi               | Po               | At              | Rn           |
| Cesium                    | Barivm          | Lantha-<br>nvm | Hafnivm                             | Tantalvm | Tungsten        | Rhenium         | Osmium    | Iridivm    | Platinym      | Gold    | Mercury | Thallivm X     | Lead X    | Bismuth          | Polonium         | Astatine        | Radon        |
| 87                        | 88              | 89             | 104                                 | 105      | 106             | 107             | 108       | 109        |               |         |         |                |           |                  |                  |                 |              |
| Fr                        | Ra              | Ac             | Rf <sub>x</sub>                     | Db       | Sg              | Bh              | Hs        | Mt         |               |         |         |                |           |                  |                  |                 |              |
| Francium                  | Radivm          | Actinium       | Ruther-<br>fordium                  | Dubnium  | Seaborg-<br>ium | Bohrium         | Hassium   | Meitnerium |               |         |         |                |           |                  |                  |                 |              |



= Required for all life



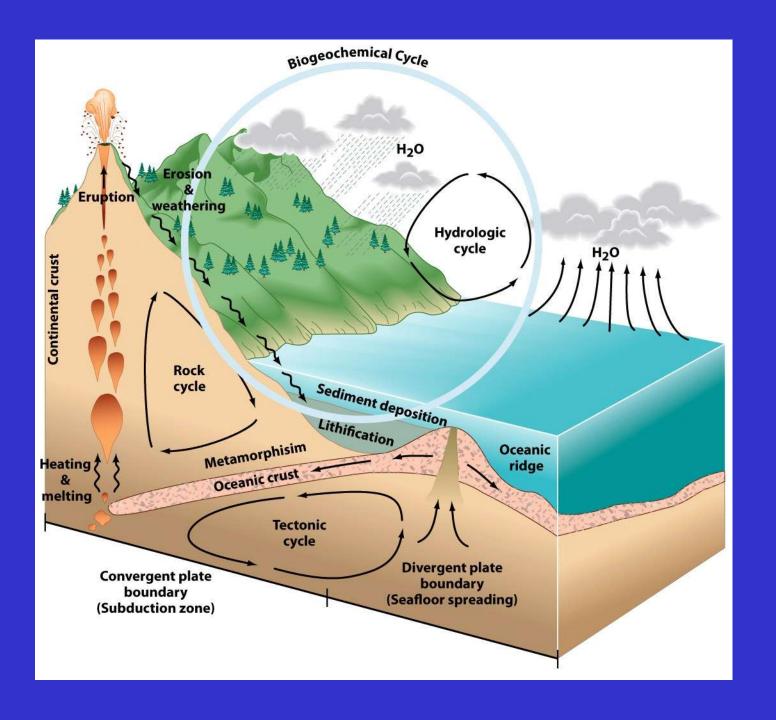
= Required for some life-forms

| 58      | 59                | 60             | 61              | 62        | 63              | 64              | 65              | 66               | 67               | 68      | 69               | 70                       | 71              |
|---------|-------------------|----------------|-----------------|-----------|-----------------|-----------------|-----------------|------------------|------------------|---------|------------------|--------------------------|-----------------|
| Ce      | Pr                | Nd             | Pm              | Sm        | Eυ              | Gd              | Tb              | Dy               | Но               | Er      | Tm               | Yb                       | Lu              |
| Cerium  | Praseody-<br>mium | Neodym-<br>ium | Prometh-<br>ium | Samarivm  | Europium        | Gadolin-<br>ium | Terbium         | Dyspros-         | Holmium          | Erbium  | Thulium          | Ytterbium                | Lutetium        |
| 90      | 91                | 92             | 93              | 94        | 95              | 96              | 97              | 98               | 99               | 100     | 101              | 102                      | 103             |
| Th      | Pa                | U              | Npx             | Pux       | Am <sub>×</sub> | Cm <sub>x</sub> | Bk <sub>x</sub> | Cfx              | Es <sub>×</sub>  |         | Mdx              | (100) HOUSE CONT.   100) | Lwx             |
| Thorium | Protactin-<br>ium | Uranium        | Neptun-<br>ium  | Plutonium | Americium       | Curium          | Berkelium       | Californ-<br>ivm | Einstein-<br>ivm | Fermium | Mendelev-<br>ium | Nobellium                | Lawren-<br>cium |



= Moderately toxic: either slightly toxic to all life or highly toxic to a few forms



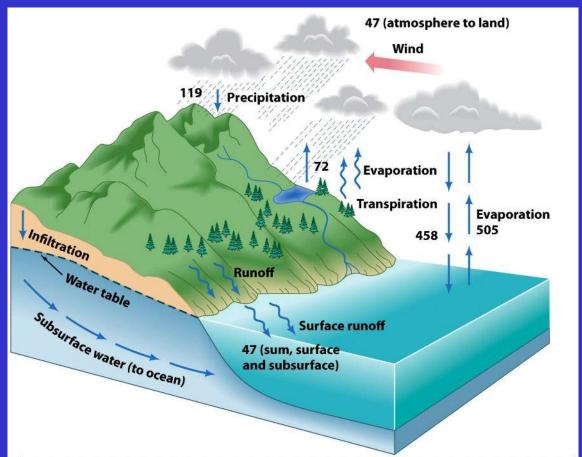

= Highly toxic to all organisms, even in low concentrations

# General Concepts Central to Biogeochemical Cycles

- Some chemicals cycle quickly and are readily regenerated for biological activity.
  - They typically have a gas phase, are soluble and carried by the hydrologic cycle.
- Other chemical elements are relatively immobile and returned by geological processes.
  - Typically lack a gas phase and insoluble

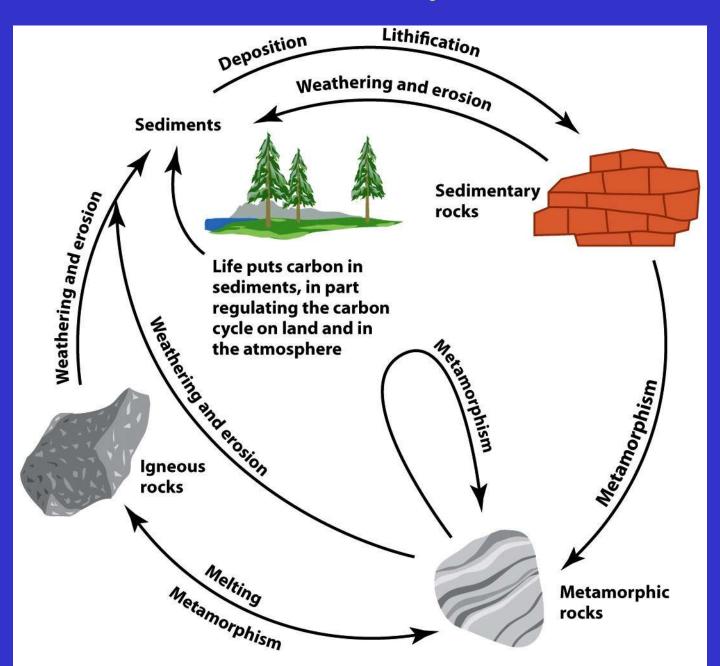
# The Geologic Cycle

- Over the last 4.6 billion years rocks and soils has been continually
  - Created, maintained, changed, and destroyed
  - By physical, chemical, and biological processes
- Geologic cycle- group of cycles that is responsible for formation and change
  - Tectonic, hydrologic, rock, and biogeochemical




## The Tectonic Cycle

- Involves creation and destruction of the lithosphere (outer layer of Earth)
  - − ~100 km thick and broken in to several plates
  - The movement of plates called plate tectonics
- Plate tectonics has large scales effects
  - Alterations in climate
  - Ecological islands
  - Areas of volcanic activity and earthquakes




#### The Hydrologic Cycle



| Compartment           | Vol. (thousands of km <sup>3)</sup> | Percentage of Total Water |
|-----------------------|-------------------------------------|---------------------------|
| Ocean                 | 1,338,000                           | 96.5                      |
| Glaciers and ice caps | 24,064                              | 1.74                      |
| Shallow groundwater   | 10,530                              | 0.76                      |
| Lakes                 | 176.4                               | 0.013                     |
| Soil moisture         | 16.5                                | 0.001                     |
| Atmosphere            | 12.9                                | 0.001                     |
| Rivers                | 2.12                                | 0.0002                    |

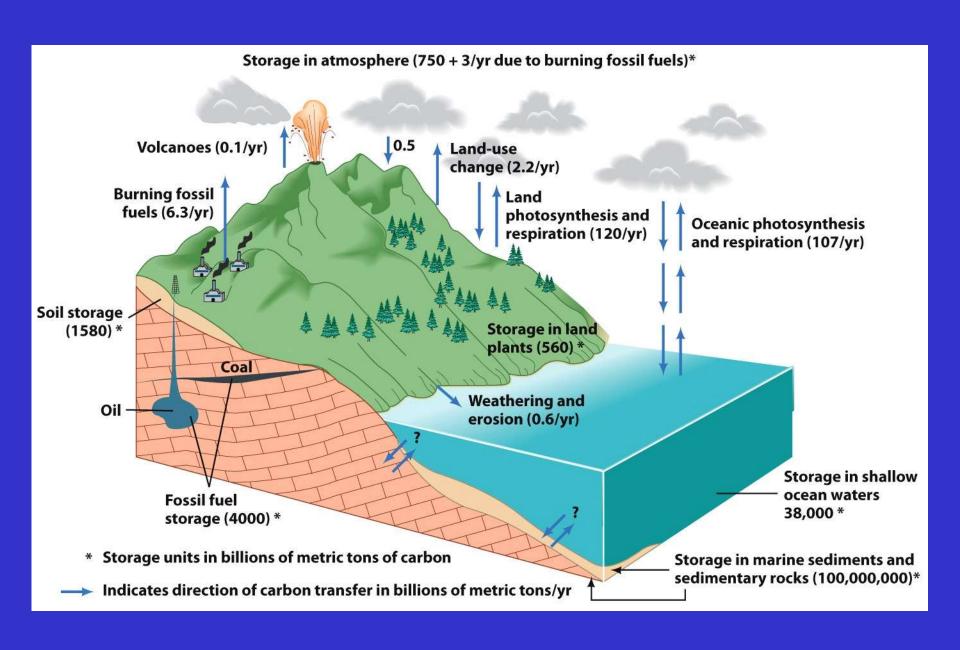
#### The Rock Cycle

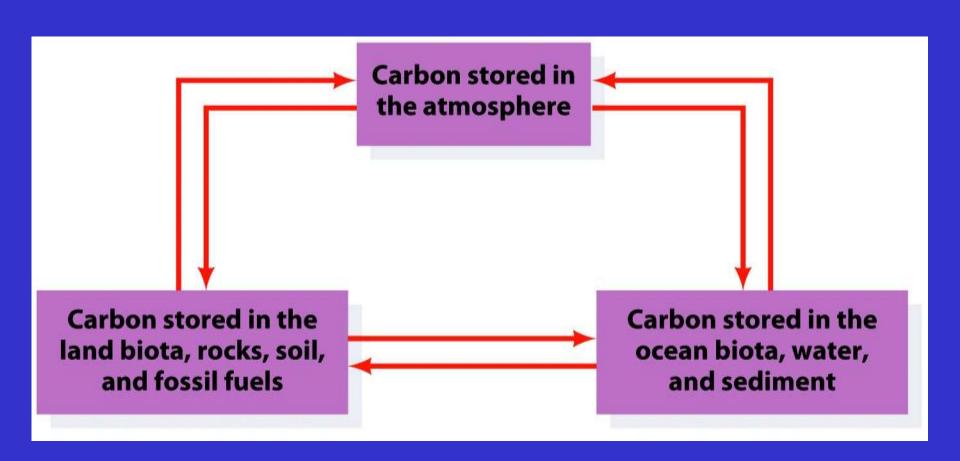






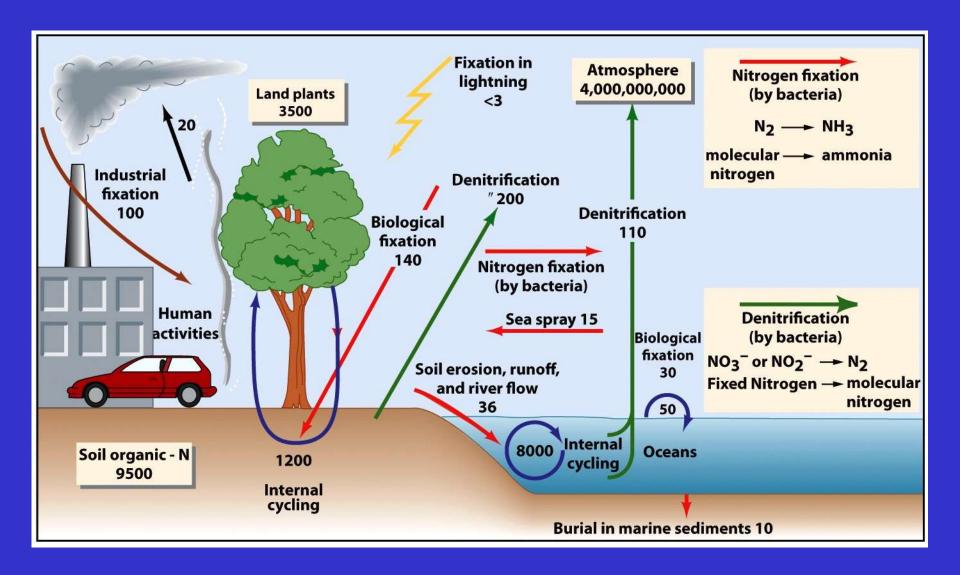
## The Carbon Cycle


- Carbon is the element that anchors all organic substances.
- Carbon has a gaseous phrase
  - Enters atmosphere (CO<sub>2</sub> and CH<sub>4</sub>) through respiration, fires and diffusion.
  - Removed from the atmosphere by photosynthesis


## The Carbon Cycle

- Carbon occurs in the ocean in several forms
  - Dissolved CO<sub>2</sub>, carbonate and bicarbonate
  - Marine organisms and their products, CaCO<sub>3</sub>
- Enters the ocean by
  - Simple diffusion then dissolves
  - Transfer from land in rivers as dissolved carbon
  - Wind

## The Carbon Cycle

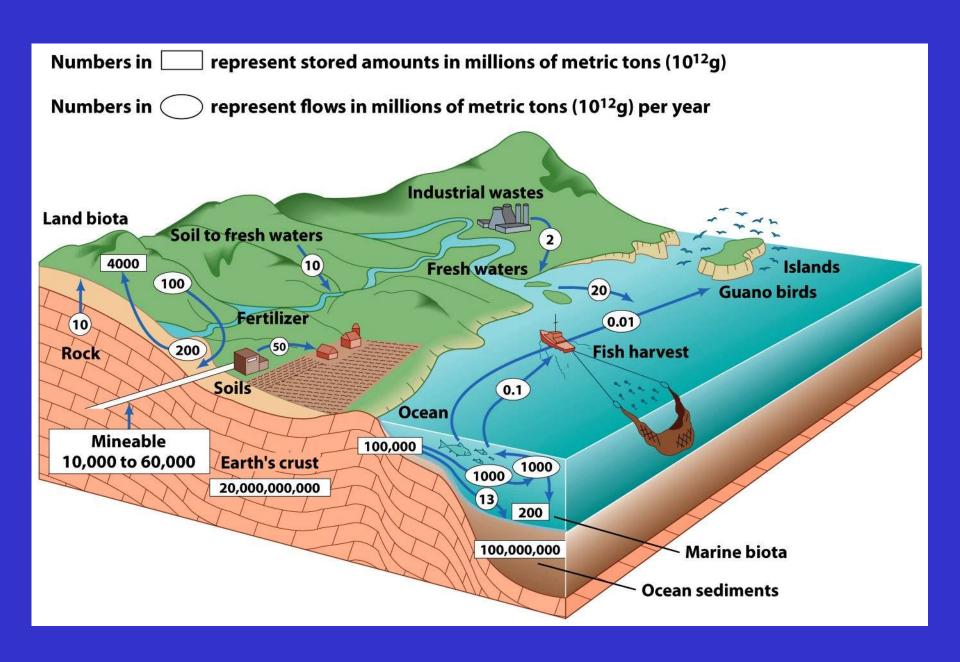

- Carbon enters the biota through photosynthesis and then returned by respiration or fire.
  - When organism dies decomposition releases carbon.
  - If buried under certain conditions carbon is not be released
    - Transformed into fossil fuels





# The Nitrogen Cycle

- N essential to life because it is necessary for the production of proteins and DNA.
- Free N<sub>2</sub> makes up 80% of atmosphere
  - But most organisms can't use it directly
  - Relatively unreactive element must be converted to NO<sub>3</sub><sup>-</sup> or NH<sub>4</sub><sup>+</sup>
  - Done by bacteria




## The Phosphorus Cycle

- P one of the "big six" required for life
  - Often a limiting factor for plant and algal growth
- Does not have a gaseous phase
  - Rate of transfer slow

## The Phosphorus Cycle

- Enters biota through uptake as phosphate by plants, algae and some bacteria.
  - Returns to soil when plants die or is lost to oceans via runoff
  - Returned to land via ocean feeding birds (guano)
- Guano deposits major source of P for fertilizers

