Differences between somatic & autonomic reflex arc

<table>
<thead>
<tr>
<th></th>
<th>Autonomic reflex arc</th>
<th>Somatic reflex arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Receptor</td>
<td>In the viscus or internal organ</td>
<td>In the skin</td>
</tr>
<tr>
<td>2. Afferent</td>
<td>Pass via a dorsal root or cranial nerve & has its cell body in the dorsal root ganglia</td>
<td>The same</td>
</tr>
<tr>
<td>3. Center</td>
<td>Lateral horn cells (LHCs)</td>
<td>Anterior horn cells</td>
</tr>
<tr>
<td>4. Efferent</td>
<td>Composed of 2 neurons: preganglionic & postganglionic in between the 2 autonomic ganglia</td>
<td>Composed of 1 neuron only</td>
</tr>
<tr>
<td>5. Effector Organ</td>
<td>Smooth muscle, cardiac muscle or gland</td>
<td>Skeletal muscle</td>
</tr>
<tr>
<td>6. Velocity of Conduction</td>
<td>Slow due to thin nerve fiber</td>
<td>Fast due to thick nerve fiber</td>
</tr>
</tbody>
</table>

Autonomic ganglia act as distribution center:
- Each preganglionic axon diverges to an average of 8-9 postganglionic neurons → diffuse autonomic output.
- In sympathetic system: preganglionic fiber synapse & activate many postganglionic neurons → generalizing sympathetic effects.
- In parasympathetic system: preganglionic fiber synapse & activate only few postganglionic neurons → localized parasympathetic effects.

Function of Sympathetic system at rest:
- The sympathetic system is continuously active.
- The basal rate of activity is called "sympathetic tone".
- The sympathetic tone is mainly to maintain arterial pressure & help in distribution of blood to the various tissues.
Function of Sympathetic system in emergency
(Alarm response 'stress response'):
1. **Eye:** dilatation of the pupil more light into the eye.
2. **Heart:** increase heart rate & force of contraction & increase blood pressure
 \[\rightarrow\] better perfusion of the vital organs & muscle.
3. **Lung:** bronchodilatation to ensure better ventilation & more \(O_2\).
4. **Liver:** increase glycogenolysis elevating blood glucose level
5. **Spleen:** Contraction of Splenic capsule & squeezing of blood rich RBCs into the circulation.
6. **Adrenal medulla:** secretion of adrenaline & noradrenaline in the blood
 potentiating sympathetic activity.
7. **Skin:** - Vasoconstriction of blood flow limiting bleeding if wound.
 - Sweat glands: secretion of sweat increasing heat loss from the body.
8. **Muscle:** Orbelli phenomenon: Better contraction, delayed fatigue & early recovery
 of skeletal muscle after fatigue.
9. **Blood vessel:** the blood flow is shifted from peripheral & unimportant organs
 as skin & splanchnic areas to important areas as CNS & muscle.
10. **Metabolism:** increase glucose & free fatty acids level supplying more energy.
11. **CNS:** - increase mental activity.
 - Activation or reticular formation: reinforcing the alert & arousal state.

- **Types of cholinesterase:**
 * **True cholinesterase:**
 - Present in the cell membranes of cholinergic nerve terminals.
 * **Pseudocholinesterase:**
 - Present in the fluid surrounding the cholinergic nerve terminals as small amount
 of \(ACh\) diffuse to the surrounding fluids.
- **Value of cholinesterase:**
 - It's value is to keep action of \(ACh\) localized in the site of liberation, otherwise
 it may diffuse to the blood giving generalized effect.

6. **Role of adrenal medulla in function of sympathetic system:**
 - The organs are actually stimulated by 2 ways at the same time:
 * **Directly** by sympathetic nerves.
 * **Indirectly** by medullary hormones adrenaline & noradrenaline.
 - Total loss of 2 adrenal medulla has a little effect on the sympathetic actions
 because the direct pathway can still perform all necessary functions.