Anemia 1: Fourth year Medical Students/ October/21/ 2015/

Abdallah Abbadi.MD.FRCP Professor Email: abdalla.awidi@gmail.com

Main Hematological diseases

A- Benign Hematology

- 1- Anemias
- 2- Bleeding disorders
- 4- Thrombotic disorders
- 3- Benign WBC disorders

B- Hematological Neoplasms/ clonal disorders

- 1- Acute & Chronic leukemias
- 2- Plasma cell discrasias
- 3- HD and NHL

4- Chronic Myeloproliferative disorders & MPN/MDS

Definition:

Anemia is operationally defined as a reduction in one or more of the major RBC measurements:

Hemoglobin concentration, Hematocrit, RBC count

These are all concentration measures

The cut-off value defining anemia has been determined by convention as the value at -2 SD from the mean or the 2.5th percentile of the normal distribution of a healthy iron-replete population.

WHO's Hemoglobin thresholds used to define anemia (g/dl)

```
Children (0.5–5.0 yrs) 11.0
Children (5–12 yrs) 11.5
Teens (12–15 yrs) 12.0
Women, non-pregnant (>15yrs) 12.
Women, pregnant 11.
Men (>15yrs) 13.
```

Anemia

- Understanding anemia
 - Disease to be treated on its own merits
 - Condition a secondary manifestation of another disease
- Causes
 - Decreased production
 - Blood loss
 - Hemolysis

Factors that influence symptomatology and severity of symptoms

- Acute or chronic
- Cardiovascular status
- Additional symptoms related to cause
- Additional symptoms related to type of anemia
- Any intravascular hemolysis

Clinical Evaluation of Anemia: History

- Proper History; including history of bleeding and systemic illness
- Dietary History
- Past History
- Family History
- Drug history
- Travel History

Symptoms and Signs of Anemia

1- Symptoms vary according to

A- severity of the anemia

B- How acute or Chronic is the anemia

C- The cause of the anemia: abnormal production, bleeding, hemolysis,

D- Functional status of the heart and lungs

2- All anemias may have symptoms related to the "anemia syndrome"

PATHOLOGY, SYMPTOMS, AND SIGNS OF ANEMIA

The "Anemia Syndrome" due to tissue hypoxia

- 1- Dizziness
- 2- Fatigue
- 3- Shortness of breath especially on exertion
- 4- Headaches
- 5- Chest pain/ palpitations
- 6-? Heart Failure

Signs in Hematology

- 1- Frequently non-specific
- 2- May be characteristic
- 3- Combination of the abnormalities causing the symptoms
- 4- May be very apparent in advanced disease or very subtle in early disease
- 5- Careful examination is needed
- 6- Changing signs require caution and repeated examination

Clinical evaluation of anemia: **Physical Examination**

- Look for signs of anemia
- Look for signs suggestive of type
- Examine for splenomegaly/Hepatomegaly
- Look for signs suggestive of cause
- Examine for signs of systemic disease

Anemia Classification: Two main approaches

1. Biologic or kinetic approach

Determined by reticulocyte count

2. Morphology.

- Determined by MCV
- Acute vs. chronic
 - Signs and symptoms

Laboratory Evaluation of Anemia

- Complete blood count including HB, RBC, MCV, RDW
- Reticulocyte count
- Peripheral smear

Morphological Classification of Anemia

- **A** Normocytic/normochromic (normal MCV &MCH): acute blood loss, Hemolysis, ACD, BM failure
- **B** Microcytic/hypochromic (mcv<78, mch <26): IDA, Thalassemia
- **C** Macrocytic (MCV>98): megaloblastic anemias

Anemia/ Kinetic

Low Production? Short Survival/Destruction? Bleeding?

The key test is the Retics count

The reticulocyte count

- To be useful it must be adjusted for the patient's hematocrit. When the hematocrit is low reticulocytes are released earlier from the marrow we need to adjust for this phenomenon.
- Corrected retic. = Patients retic.(3%) x (Patients Hct(30)/45) : 3(%)x30/45 = 2%
- Retics index (RPI) = corrected retic. count/Maturation time (Maturation time = 1 for Hct=45%, 1.5 for 35%, 2 for 25%, and 2.5 for 15%.) example above: 2/1.75= 1.14
- Absolute reticulocyte count = retics % x RBC number.
 Example: 1.1% x 4.96 x10⁶ = 55,000/μl
 12.2% x 2.05 x10⁶ = 250,000/μl

Schistocytes = microangiopathy Spherocytes = warm antibodies or hereditary spherocytosis Sickle cells = sickle cell disease Bite cells = G6PD deficiency Target cells = Thalasemia Inclusions = Malaria

Evolution of Iron Deficiency Anemia

• Depletion of body Iron stores only

• Iron Deficiency but No anemia

- Iron Deficiency with anemia
- Ferritin: The Best Marker for Iron Deficiency in "adults"

RDW: Normal + Abnormal

divide the standard deviation of the RBC volume by the MCV and multiply by 100

Severe Hypochromia & Anisocytosis, Poikylocytosis: Iron Deficiency Anemia

Normal Smear

Hypochromia with target cells but without Anisocytosis: Thalassemia Trait

Case one

24 yr old female complains of

Dizziness, Fatigue, Shortness of breath especially on exertion and Headaches for the last 2 months. She has been losing scalp hair.

She does not eat red meat and has reported heavy menstrual bleeding.

Her physical exam showed

Case Onecontinuation

Lab: Hb 8, MCV 72, RDW 19, MCH 20pg. WBC 8000/Normal dif.Plts 380000

Bld Film: microcytic, hypchromic, anisocytosis, poikilocytosis, Retics (corrected) 0.8%

Serum Ferritin 2

Hb Electrophoresis?? Serum B12, Folate??

S Fe, TIBC??, BM ??? GI endoscopy??, Investigate for bleeding disorder: VWD?, celiac disease?

Gyne consulation

Xray and endoscopy showed

Diagnosis

Causes of True (classical) iron deficiency

1-blood loss.2- iron-poor diet 3- increased iron needs.4- poor iron absorption (gluten enteropathy)

Diagnosis of this case: Iron Deficiency Anemia. secondary to poor red meat intake + ?? Mild bleeding disorder which needs to be investigated

Treatment/ Follow up of Case 1

- 1- Oral Iron: Fe gluconate, sulphate
- 2- educate
- 3- IV Fe?? Fe sucrose/carboxymaltose or new Fe dextran

Follow up: check CBC every month : expected Hb rise ± 1g/ 10 days. Check Ferritin at 3 months. Follow other investigations and consulations

Differential Diagnosis of Microcytic Anaemia

- Thalassaemia syndromes
- Certain haemoglobinopathies (Hb C)
- Anaemia of chronic inflammatory diseases
- Certain forms of sideroblastic anaemia
- Genetic forms of iron deficiency anaemia

Case one B

60 yr old male complains of :Dizziness, Fatigue, Shortness of breath especially on exertion and Headaches for the last 2 months. He has constipation and weight loss 5 kg over 2 months.

Lab: Hb 8, MCV 72, RDW 19, MCH 20pg. WBC 8000/Normal dif.Plts 380000

Bld Film: microcytic, hypchromic, anisocytosis, poikilocytosis, Retics (corrected) 0.8%

Serum Ferritin 2. FOB x 3 positive in 2.

Case One B

Findings:

Diagnosis: Colon adenocarcinoma Mod. dif.

Always Look for a cause for IDA. Anemia must have a full identification

Anemia is not a final diagnosis

IRON DEFICIENCY ANEMIA **IS NOT** A DIAGNOSIS PER SAY. ALWAYS PUT A LABEL TO IT: **IDA DUE TO UPPER GI BLEEDING DUE TO GASTRIC CANCER**