Anemia (3).ms4.25.Oct.15 Hemolytic Anemia

Abdallah Abbadi

Case 3

24 yr old female presented with "anemia syndrome" and jaundice. She was found to have splenomegaly.

Hb 8, wbc 12k, Plt 212k, retics© 12%, LDH 1400, bilirubin 7mg/dl,d 2.5mg/dl, DAT +3.Bld film spherocytosis, polychromasia.

Bld film

Supravital stain(retics)

Case 3

CT Abdomen AbdominalUS BM aspirate

BM:erythroid hyperplasia with megaloblastoid changes

Diagnosis: AIHA. Treated with steroids + folic acid, complete response, but 9 months later had NHL.

Hemolysis= RBC destruction= Shortend RBC Survival with or without anemia

Hemolytic Anemias – Classification

- By sites of red cell destruction: intra v extravascular
- Acquired (immune, Non-immune).
 v congenital (membrane: HS, Enzymopathies: G6PD def/PK, Hb-pathies: Thal, ss)
- By mechanism of red cell damage:

Extravascular Hemolysis

Ingested by RE cell (spleen & liver)

Reutilized bilirubin

Intravascular Hemolysis

Hemolysis

Evidence for increased red cell production

- In the blood:
- Elevated reticulocyte count (corrected/RPI)
- Circulating NRBCs may be present
- In the bone marrow:
- erythroid hyperplasia
- reduced M/E (myeloid/ erythroid erythroid ratio)
- In the bone:
- Deforming changes in the skull and long bones (" frontal bossing ")

General Clinical Features

- 1- Anemia syndrome
- 2- Splenomegaly
- 3-gallstones.
- 4- Dark urine (tea-colored or red)
- 5- Patients may have chronic ankle ulcers.
- 6- Aplastic crises associated with Parvovirus B19, may occur
- 7- Increased requirement for folate

Gallbladder stones/ biliary/ pigment stones

Parvovirus B19

- Non-encapsulated DNA virus.
- Infects and lyses RBC precursors in marrow, causing 7-10d cessation of erythropoiesis.
- Normal individuals have no significant hematologic effect, since RBCs have normal life span.
- In pts with hemolytic anemias, loss of red cell production causes Aplastic Crisis

Autoimmune Hemolytic Anemia

- Warm antibodies (IgG-mediated)
 - Primary 45%
 - Secondary40%
 - Lymphoproliferative disease
 - Connective tissue disease
 - Infectious disease
 - Drug-induced15%
- Laboratory testing
 - Normocytic/macrocytic anemia
 - Peripheral smear spherocytosis

Anti-Globulin (Coombs) Testing

Direct antiglobulin testing(DAT)

Indirect antiglobulin testing

Treatment of Autoimmune Hemolytic Anemia (Warm Antibody type)

- Treat underlying disease if indicated
- Prednisone (1 mg/kg/day for two weeks, then taper)
- Splenectomy ??
- Other
 - Immunosuppressive agents
 - IVIG

Hemolytic Anemia with Intravascular Hemolysis

- Mechanical damage (Microangiopathic hemolytic anemia)
- Chemical damage (Burns)
- Infection (Malaria or Babesiosis)
- Transfusion reaction (ABO incompatibility)

Differential Diagnosis of Microangiopathic Hemolytic Anemia

- Thrombotic thrombocytopenic purpura (TTP)
- Hemolytic uremic syndrome (HUS)
- Disseminated intravascular coagulation (DIC)
- Vasculitis
- Malignant hypertension
- Metastatic neoplasm with vascular invasion
- Preeclampsia/HELLP syndrome of pregnancy

Schistocytes: Microangiopathic Hemolytic Anemia

Case 3 B

19 yr old male presented with "anemia syndrome", fever and easy bruising. No splenomegaly

Hb 6 g/dl, WBC 1500 : N10%, L 80%, others 10%.

Retics© 0,001%.MCV 105fl,Plt 20k.

BM/ Trephine

CXR/lobar pneumonia

APLASTIC ANEMIA

- Aplastic anemia is a severe, life threatening syndrome in which production of erythrocytes, WBCs, and platelets has failed.
- Aplastic anemia may occur in all age groups and both genders.
- The disease is characterized by peripheral pancytopenia and accompanied by a hypocellular bone marrow.

APLASTIC ANEMIA

- The primary defect is a reduction in or depletion of hematopoietic precursor stem cells with decreased production of all cell lines
 - This may be due to quantitative or qualitative damage to the pluripotential stem cell.
 - In rare instances it is the result of abnormal hormonal stimulation of stem cell proliferation
 - or the result of a defective bone marrow microenvironment
 - or from cellular or humoral immunosuppression of hematopoiesis.

Causes of Bone Marrow Failure

Acquired

- Idiopathic
- PNH

Secondary

- Drugs
- - radiation
- Viruses

Inherited

- Fanconi anemia
- Diamond-Blackfan Anemia
- Other rare conditions

Clinical manifestations of AA

- »Anemia syndrome
- »Neutropenia syndrome
- »Thrombocytopenia syndrome
- »Combination of the above

Presenting Symptoms of Aplastic Anemia

Symptoms Number of Patients Bleeding 41 Anemia 27 Bleeding and anemia 14 Bleeding and infection 6 Infection 5 Routine examination 8 Total 101

Classification of aplastic anemia

- 1. Severe aplastic anemia is defined if at last two of the following criteria are present:
 - ANC < 0.5
 - PLT < 20
 - RTC < 1%

Hypoplastic bone marrow (less than 25%) on biopsy

- 2. Very severe aplastic anemia
 - criteria as above but ANC < 0.2
- 3. Non-severe aplastic anemia.

Treatment of AA

- » Remove causative agent, if known
- » Supportive care

RBC transfusions

Treat infections

Treat Bleeding

- » Bone marrow transplant
- » Immune suppression

_ CSA

_ ATG

Combination of the above

Survival of Patients with AA

RELATED DISORDERS

- 1- Disorders in which there is peripheral pancytopenia, but the bone marrow is normocellular, hypercellular, or infiltrated with abnormal cellular elements (Myelopthesic anemia)
 - replacement of bone marrow by fibrotic, granulomatous, or neoplastic cells
 - 2- Pure red Cell aplasia
 - 3- Myelodysplastic syndrome (MDS)