

Biochemistry of neurotransmitters

Dr. Mamoun Ahram Neuroscience 2015

References

- This lecture
- Mark's Basic Medical Biochemistry, 4th ed, pp. 908-918
- http://what-whenhow.com/neuroscience/neurotransmitters-theneuron-part-1/

What is a neurotransmitter?

A chemical substance that:

- Is synthesized and stored in a presynaptic neuron (the enzymes needed for its synthesis must be present in the neuron),
- Is released at a synapse following depolarization of the nerve terminal (usually dependent on influx of calcium ions),
- binds to receptors on the postsynaptic cell and/or presynaptic terminal,
- elicits rapid-onset and rapidly reversible responses in the target cell,
- Is removed or inactivated from the synaptic cleft.

Types of neurotransmitters

- Small-molecule
 - Amines (acetylcholine, epinepherine, dopamine, histmaine, etc.)
 - Amino acids (glutamate, aspartate)
- Neuropeptides
- Gases (nitric oxide)

Note the differences

- Onset and duration of action
- Concentration for action and receptor binding
- Concentration of [Ca+] for release
- Site of synthesis, modification
- Fate

NEUROPEPTIDES

Introduction

- More than 50 neuropeptides have been described
 - Behavior
 - Pain perception
 - Memory
 - Appetite
 - Thirst
 - Temperature
 - Homeostasis
 - Sleep

Neuropeptides: neurohormones or neurotransmitters?

- Neurohormones: when neurons secrete their peptides into the vascular system to be transported to a relatively distant target
- Neurotransmitter: Many axon terminals of neurosecretory cells secrete their products at the synapse to directly affect a post synaptic cell
- Neuropeptides can do both depends on nerve terminal

Classification of neuropeptides

Neuropeptides can be grouped into families based on similarities in their amino acid sequences.

Neuropeptide Families Tachykinins: substance P, bombesin, substance Insulins: insulin, insulin-like growth factors Somatostatins: somatostatin, pancreatic polypeptide Gastrins: gastrin, cholecystokinin Opioids: opiocortins, enkephalins, dynorphin	Opiate Family	
	Name	Amino Acid Sequence
	Leu- enkephalin	Tyr-Gly-Gly-Phe-Leu-OH
	Met- enkephalin	Tyr-Gly-Gly-Phe-Met-OH
	Beta- endorphin	Tyr-Gly-Gly-Phe -Met-Thr-Ser-Glu- Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu- Phe-Lys-Asn-Ala-Ile-Val-Lys-Asn-Ala- His-Lys-Gly-Gln-His-OH
	Dynorphin	Tyr-Gly-Gly-Phe- Leu-Arg-Arg-Ile-Arg- Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln-OH

Stages of action

- Synthesis (ER and Golgi apparatus)
- Packaging into <u>large-dense core</u> <u>vesicles</u> (with modifying enzymes)
- Transport (fast-axonal transport)
 - During the transport, proteases cleave the precursor neuropeptide into the final mature form.
- Release
 - They are released gradually over time in response to general increases in the level of intracellular calcium.
- Action (prolonged)
- Termination by diffusion and degradation

Diversity: alternative splicing

- Alternative splicing of mRNA leads to translation of distinct precursors, and subsequent processing leads to unique mature peptides.
 - Example is the substance P mRNA

Diversity: proteolytic, differential, sequential processing

Neuropeptides are produced from a lo protein by

- Proteolytic processing.
- Vesicular packaging of different proteases cleavage sequences
- Hiding a proteolytic site by post-translatic addition of a carbohydrate side chain.)
- Tissue-specific

Processing of the pro-opiomelanocortin (*POMC*) precursor proceeds in an ordered, stepwise fashion. Some of the reactions are tissue specific. *ACTH*, adrenocorticotropic hormone; *CLIP*, corticotropin-like intermediate lobe peptide; *JP*, joining peptide; *LPH*, lipotropin; *MSH*, melanocyte-stimulating hormone; *PC*, prohormone convertase.

The levels of regulation of neuropeptide expression

Role of calcium

Vesicles are located further away from the presynaptic membrane and away from place of Ca influx

Neuropeptides

- The endogenous opiates
- Neuropeptide Y
- Galanin
- Pituitary adenylate cyclase—activating peptide (PACAP)
- Melanocyte-stimulating hormone (MSH)
- Neurokinin A (NKA)
- Substance P (SP)
- Neurotensin
- Calcitonin-gene-related protein (CGRP)
- Vasoactive intestinal polypeptide (VIP)

SMALL-MOLECULE NEUROTRANSMITTERS

Types of small-molecule neurotransmitter

- Nitrogen-containing molecules
 - amino acids and their derivatives
 - intermediates of glycolysis and the Krebs cycle (TCA cycle)

Stages of action

- Synthesis of enzymes
 - Cytosol
 - ER-Golgi apparatus (packaging into large-dense core vesicles)
- Transport of enzymes (slow and fast-axonal transport)
- Synthesis in pre-synaptic terminal
- Packaging in synaptic vesicles
- Release
 - They are released in brief pulses each time an action potential triggers the infulx of calcium
- Action (short)
- Termination by diffusion, reuptake, or inactivation

Notes

- Role of cofactors
 - S-adenosylmethionine (methyl transfer)
 - Pyrodoxal phosphate (vitamin B6): transamination, decarboxylation
 - Tetrahydrobiopterin (BH4)

TYROSINE-DERIVED NEUROTRANSMITTERS

Dopamine, norepinephrine, and epinephrine

COMT and MAO

Inactivation is dependent on SAM and vitamin B12 and folate

Regulation

- Tyrosine hydroxylase
 - Short term
 - Inhibition by free cytosolic catecholamines
 - Catecholamines compete with BH4 binding to enzyme
 - Activation by depolarization
 - Tight binding to BH4 following phosphorylation by PKA, CAM kinases, PKC
 - Long-term (plus dopamine β-hyroxylase)

TRYPTOPHAN-DERIVED NEUROTRANSMITTERS

Serotonin and melatonin

Melatonin

- Serotonin synthesized in the pineal gland serves as a precursor for the synthesis of melatonin, which is a neurohormone involved in regulating
 - sleep patterns
 - Seasonal and circadian (daily) rythyms
 - Dark-light cycle

GLUTAMATE AND ASPARTATE

Glutamate and aspartate

- Nonessential amino acids
- Do not cross BBB
 - must be synthesized in neurons
- Main synthetic compartments
 - neurons
 - glial cells
- Both are excitatory neurotransmitters.

Synthesis of glutamate

Sources:

- Glycolysis → Krebs cycle →
 Transamination or
 dehydrogenation
- Glutamine (deamination)
- Another source: aspartate
- Removal
 - excitatory amino acid carrier-1 (EAAC1)
 - glutamate transporter-1 (GLT-1)
 and glutamate—aspartate
 transporter (GLAST)

Sources of glutamate (supplementary)

Aspartate

- A vesicular uptake mechanism for aspartate has not yet been demonstrated, somewhat weakening the case for considering aspartate to be a neurotransmitter
- Precursor: oxaloacetate (transamination)

Glycine

- The major inhibitory neurotransmitter in the spical cord
- Synthesized from serine by serine hydroxymethyltransferase through 3-phosphoglycerate

Removal: high-affinity Folic acid

Carbon dioxide Ammonia

OTHERS

GABA

- GABA is present in high concentrations (millimolar) in many brain regions.
 - These concentrations are about 1,000 times higher than concentrations of the classical monoamine neurotransmitters in the same regions.
- The GABA shunt is a closed-loop process with the dual purpose of producing and conserving the supply of GABA.

GABA shunt

Synthesis of acetylcholine

- Choline +
 acetylcoenzyme-A by
 choline
 acetyltransferase in
 cytoplasm
- Transported into and stored in vesicles.
- Removal: hydrolysis by acetylcholinesterase

Histamine

it does not penetrate the blood—brain barrier and, hence, must be synthesized.

Inactivation of histamine

Nitric oxide (NO)

- Glutamate is released (1) and acts on NMDA receptors located on the post-synaptic neuron (2)
- Ca2+ enters the postsynaptic neuron and binds with calmodulin activating NOS (3) resulting in formation of NO and citrulline from L-arginine (4).
- NO stimulates guanylate cyclase forming cGMP (5), which results in a physiological response (6)
- No can diffuse out: a) to the presynaptic terminal (retrograde messenger) (7) prolonging effect and b) into adjacent neurons (8) and glial cells (9) stimulating guanylate cyclase.

Half-life: 2-4 seconds
NO is inhibited by hemoglobin and other
heme proteins which bind it tightly

Is NO a neurotransmitter?

Yes, but:

- It is not stored in vesicles
- It is not released by calcium-dependent exocytosis (it diffuses)
- Its inactivation is passive (there is no active process that terminates its action)
 - It decays spontaneously
- It does not interact with receptors on target cells
 - Its sphere of action depends on the extent to which it diffuses, and its action is not confined to the conventional presynaptic-postsynaptic direction.
- NO acts as a retrograde messenger and regulates the function of axon terminals presynaptic to the neuron in which it is synthesized.

NO synthase

- Isoform I (nNOS or cNOS)
 - Neurons and epithelial cells
 - activated by the influx of extracellular calcium
- isoform II (iNOS)
 - Macrophages and smooth muscle cells
 - induced by cytokines
- and isoform III (eNOS)
 - Endothelial cells lining blood vessels
 - activated by the influx of extracellular calcium
- All three isoforms require BH2 as a cofactor and nicotinamide adenine dinucleotide phosphate (NADPH) as a coenzyme

