natarboush@ju.edu.jo www.facebook.com/natarboush

Bioenergitics

Energy & why do we need it?

- Definition: Capacity to perform work
- Types of energy:
 - -1Kinetic: Energy in the process of doing work or Energy of motion

- -2Potential: Energy content stored in a matter
- Why products are more stable than the reactants?
- Whether a reaction occurs or not!

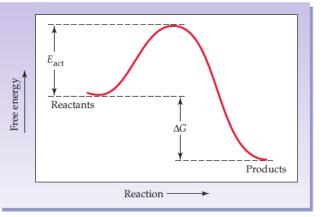
Thermodynamics/ Bioenergetics

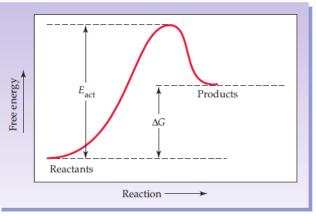
- Thermodynamics: the study of energy transformations that occur in a collection of matter
- Bioenergetics: studying thermodynamics)energy) in living organisms
- First Law of thermodynamics: Energy cannot be created or destroyed, but only converted to other forms. Energy of universe is constant
- Second Law: All energy transformations are inefficient
 1. systems tend to increase in disorder
 2. systems lose usable energy as heat

Why Do Chemical Reactions Occur? Concept of Free Energy, *Gibbs Equation*

Free energy change: the total energy change in a system with respect to its temperature

Free-energy change

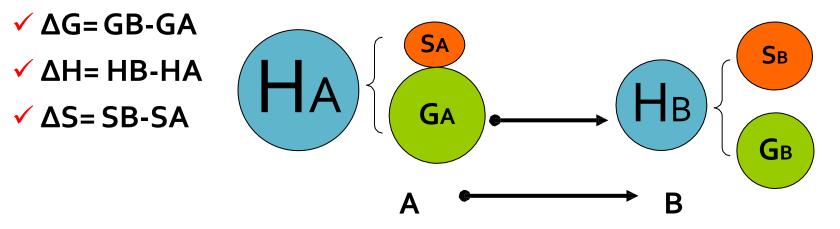



(in kelvins)

Entropy change

Heat of reaction

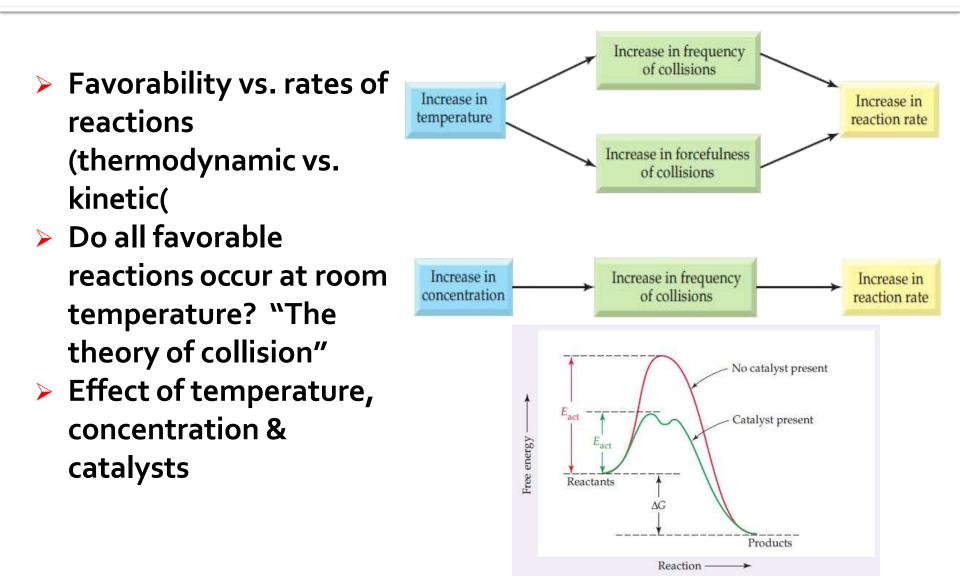
- Exergonic vs. endergonic
- The value of the free-energy change determines spontaneity
- The concept of activation energy



(b) An endergonic reaction

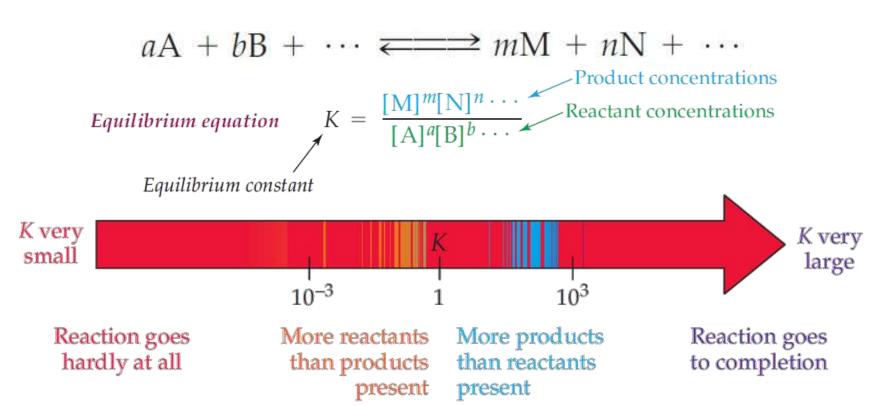
Energy of reactions

- Enthalpy)H & AH): A measure of the amount of energy associated with substances involved in a reaction
- Exothermic & endothermic vs. Spontaneous & nonspontaneous –NOT always
- Entropy)S, ΔS): The amount of disorder in a system (solid, liquid &gas(
- Favorable enthalpy & entropy vs. favorable reaction



The different free energy terms

- AG =the free energy difference of a system at any condition
- AG° = the free energy difference of a system at standard conditions 25)C° 1 & atmospheric pressure, 1M concentration of reactants & products, pH (7 =
- Which one of these terms determine the feasibility the reaction?
- > ΔG depends only on initial state and final state of biochemical pathways
- > ΔG is not affected by the mechanism of the reaction


$$A \xrightarrow{Enzyme 1} B \xrightarrow{Enzyme 2} C \xrightarrow{Enzyme 3} \dots$$

How Do Chemical Reactions Occur?

Reversible Reactions & Chemical Equilibrium

- What is a reversible reaction?
- What is the chemical equilibrium? Chemical equilibrium is an active, dynamic condition
- At equilibrium, are concentrations equal?

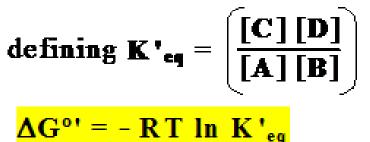
ΔG & K_{eq}

≻ At equilibrium, ∆G=o ≻ Can a reaction has a + ∆G° & still be favorable?

For a reaction $\mathbf{A} + \mathbf{B} \leftrightarrow \mathbf{C} + \mathbf{D}$ $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ \circ} + \mathbf{RT} \ln \left(\frac{]\mathbf{C}] [\mathbf{D}[}{]\mathbf{A}] [\mathbf{B}[]} \right)$

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \left(\frac{]\mathbf{C}] [\mathbf{D}[}{]\mathbf{A}] [\mathbf{B}[} \right)$$

$$\mathbf{0} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \left(\frac{]\mathbf{C}] [\mathbf{D}[}{]\mathbf{A}] [\mathbf{B}[} \right)$$


$$\Delta \mathbf{G}^{\circ} - = \mathbf{RT} \ln \left(\frac{]\mathbf{C}] [\mathbf{D}[}{]\mathbf{A}] [\mathbf{B}[} \right)$$
defining $\mathbf{K'}_{eq} = \left(\frac{[\mathbf{C}] [\mathbf{D}]}{]\mathbf{A}] [\mathbf{B}[} \right)$

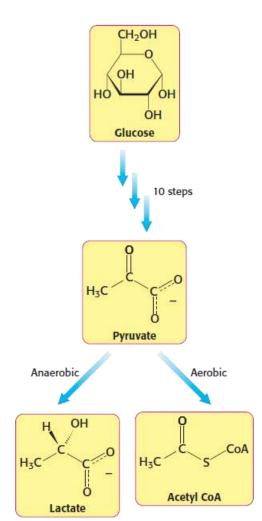
ea

 $\Delta \mathbf{G}$

K' _{eq}	ΔG °' kJ/mol	Starting with 1M reactants & products, the reaction:	
104	23 -	proceeds forward (spontaneous(
10²	11 -	proceeds forward (spontaneous(
$1 = 10^{0}$	0	is at equilibrium	
²⁻ 10	11+	reverses to form "reactants"	
⁴⁻ 10	23 +	reverses to form "reactants"	

The Effect of Changing Conditions on Equilibria

 $aA + bB + \cdots \equiv mM + nN + \cdots$

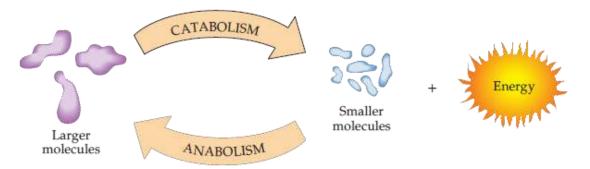

- When a stress is applied to a system at equilibrium, the equilibrium shifts to relieve the stress
- Stress: any change that disturbs the original equilibrium
 Effect of Changes in Concentration
 - What happens if a reactant/product is continuously supplied/ removed?
 - Metabolic reactions sometimes take advantage of this effect

Effect of Changes in Temperature

- Endothermic/exothermic are favored by increase/decrease in temperature, respectively.
 - Effect of a catalyst on equilibrium

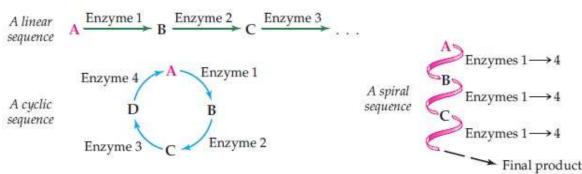
Metabolism

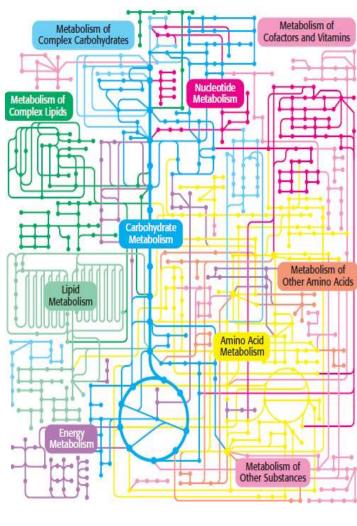
- What is the source of all energy?)autotrophs vs. heterotrophs(
- Why do we need energy?
 - (1)the performance of <u>mechanical work</u> in muscle contraction and cellular movements
 - (2)the <u>active transport</u> of molecules and ions
 - (3)the <u>synthesis</u> of macromolecules and other biomolecules from simple precursors
- How do we keep the energy in the body?
- Cellular metabolism: the sum of the total biochemical activities of all cells
- Metabolism consists of energy-yielding and energy-requiring reactions



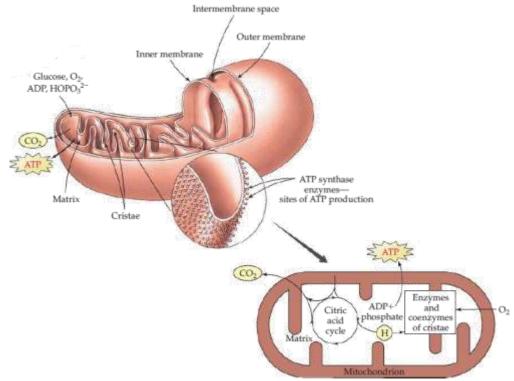
Energy and metabolic pathways

Anabolic Pathways)Endergonic reactions:(Those that <u>consume</u> energy to <u>build</u> biomolecules)Protein, Glycogen &lipids(


Catabolic Pathways)Exergonic reactions:(Those that <u>release</u> energy by <u>breaking down</u> complex molecules into simpler compounds such as glycolysis

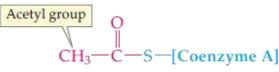

 Metabolism is essentially a linked series of chemical reactions)biochemical pathways(

Biochemical (metabolic) pathways

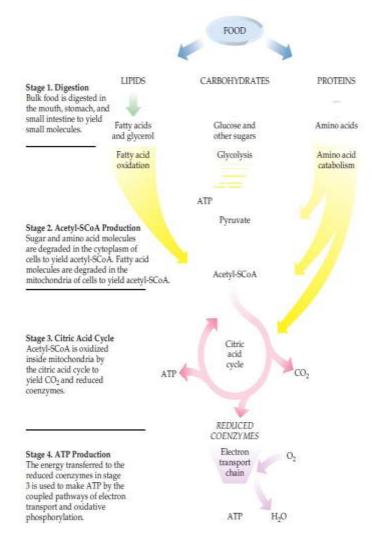

- Are interdependent
- Are subjected to thermodynamics laws
- Their activity is coordinated by sensitive means of communication
- Allosteric enzymes are the predominant regulators
- Biosynthetic & degradative pathways are <u>almost always distinct</u> (regulation(
- Metabolic pathways are <u>linear, cyclic or</u> <u>spiral</u>

The energy machinery of the cell

- Prokaryotic cells vs. eukaryotic cells
- The mitochondria (singular, mitochondrion) (90% of the body's energy ATP)
- The number of mitochondria is greatest in eye, brain, heart, & muscle, where the need for energy is greatest
- The ability of mitochondria to reproduce (athletes)
- Maternal inheritance



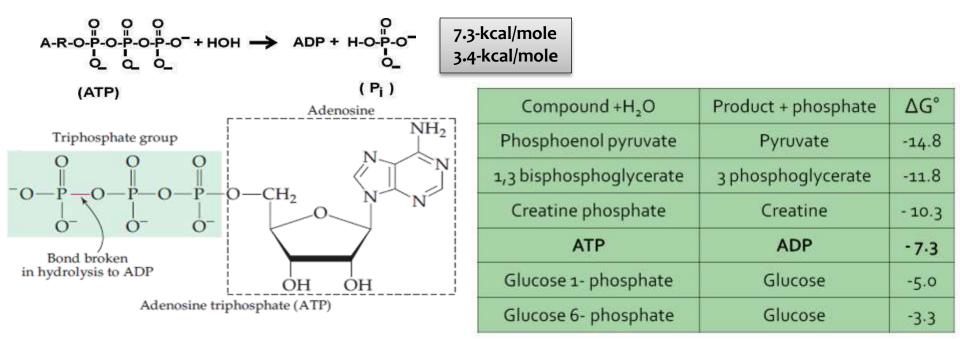
Stages of Energy Production


Stage) 1Digestion:(

- Mouth, stomach& , small intestine
- Carbohydrates to glucose & other sugars
- Proteins to amino acids
- Triacylglycerols to glycerol plus fatty acids
- From there to blood
- Stage) 2Acetyl-coenzyme A(

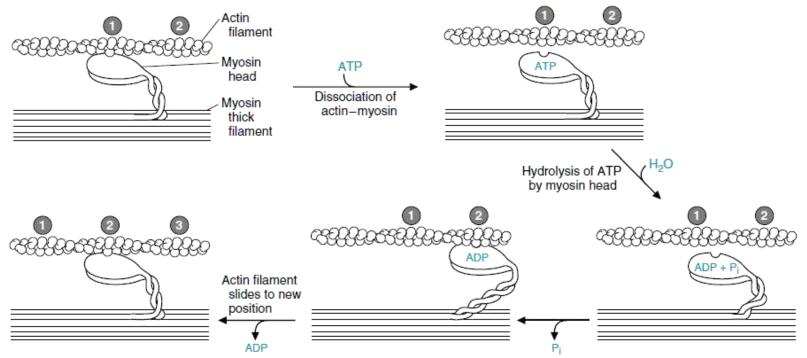
Attachment o facetyl group to coenzyme A

- Stage :3citric acid cycle
- Stage :4electron transfer chain & oxidative phosphorylation

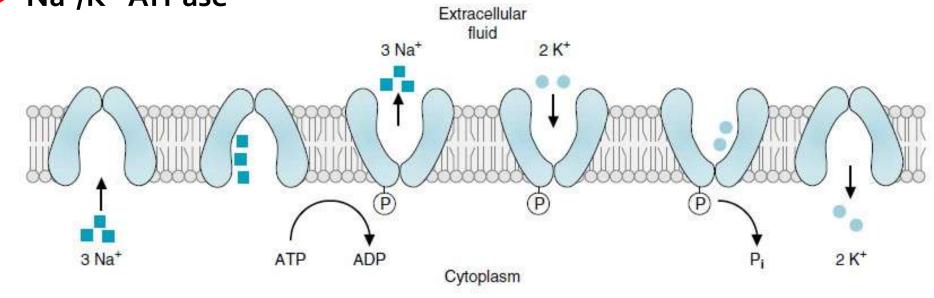


ATP

- ATP is the energy currency of the cell
- What is a high energy molecule?
- > Why ATP?



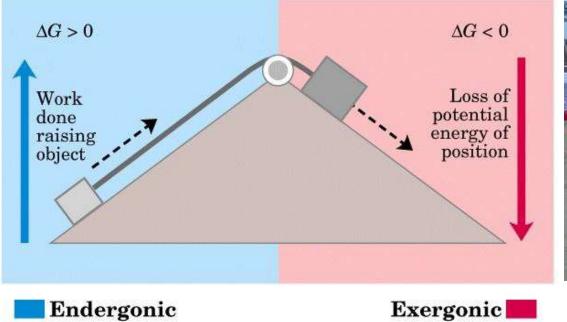
Has an intermediate energy value, so can be coupled


How & where is energy spent? Energy transformation to do mechanical work

- Exercising muscle fibers have almost a hundred-fold higher rate of ATP utilization and caloric requirements than resting muscle fibers
- The high-energy phosphate bond of ATP is converted into movement by changing the conformation of a protein

How & where is energy spent? Energy transformation to do transport work

- The expenditure of ATP for Na⁺ transport occurs even while we sleep and is estimated to account for 10 to <u>30% of our BMR</u>
- The high-energy phosphate bond of ATP is used to transport compounds <u>against a concentration gradient</u>
- <u>Na+ re-enters the cell on co-transport proteins that drive the</u> uptake of amino acids and many other compounds into the cell
 Na+/K+-ATPase

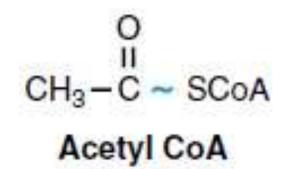

How & where is energy spent? Biochemical work

%700f our resting daily energy requirement)BMR) arises from work carried out by our largest organs

Estimated daily use of ATP)g ATP/g tissue(
Heart	16		
Brain	6		
Kidneys	24		
Liver	6		
Skeletal muscles (rest(0.3		
Skeletal muscles (running(23.6		

How do our cells get energy for unfavorable biochemical work?

The concept of coupling

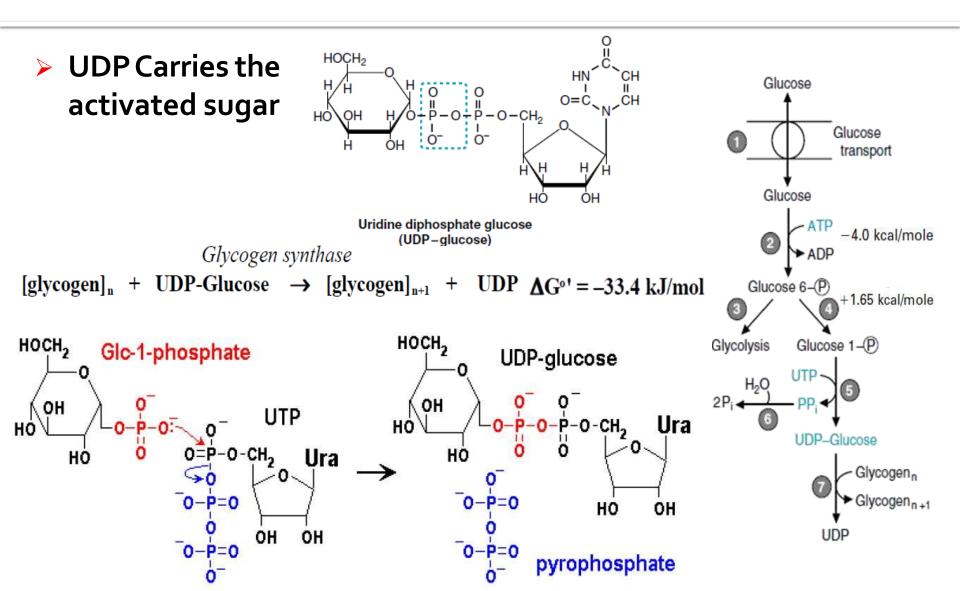


How do our cells get energy for unfavorable biochemical work?

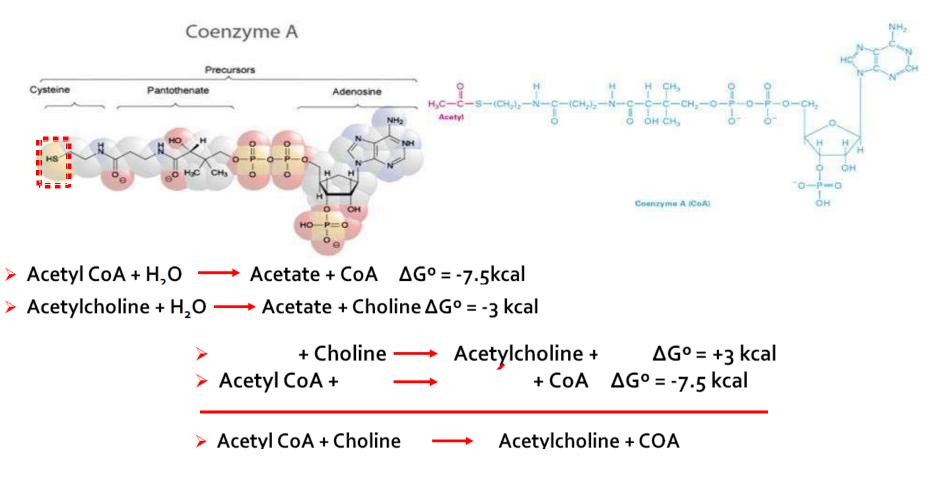
- **ΔG° Values are additive** i. Through phosphoryl transfer reactions: Glucose ✓ Step 3.3+) 2vs. 4-kcal/mole(Glucose transport ✓ Step 2.35- = 4 +2 kcal/mole Glucose <u>The net value for synthesis is irrelevant</u> 4.0 kcal/mole to the presence or absence of enzymes Glucose 6 1.65 kcal/mole ii. Activated intermediates)step 4is Glycolysis Glucose 1-(P) facilitated by steps 5&(6 UDP-Glucos **ΔG Depends on Substrate and Product** Н. Concentration) step 4 has a ratio of ; 6/94
 - 1.65+kcal/mol, if 0.4- ;3/94kcal/mol(

How do our cells get energy for unfavorable biochemical work?

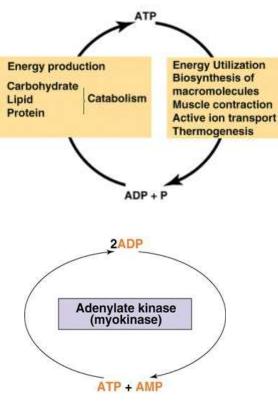
III. Activated Intermediates other than ATP; UTP is used for combining sugars, CTP in lipid synthesis, and GTP in protein synthesis



 $H = C = OPO_3^{2-}$ H = C = OH H = C = OH $H = CH_2OPO_3^{2-}$


1,3-Bisphosphoglycerate

The UDP-glucose as an example


The acetyl CoA as an example

Coenzyme A is a universal carrier)donor) of Acyl groups
 Forms a thio-ester bond with carboxyl group

Is ATP a good long-term energy storage molecule?

As food in the cells is gradually oxidized, the released energy is used to re-form the ATP so that the cell always maintains a supply of this essential molecule

Tissue	ATP turnover (mole/day(
Brain	20.4		
Heart	11.4		
Kidney	17.4		
Liver	21.6		
Muscle	19.8		
Total	90.6		


```
90.6 * 551 (g/mole)
=
94,920 g ATP
```

THERMOGENESIS

- The first law of thermodynamics
- > Heat production is a natural consequence of "burning fuels"
- Thermogenesis refers to energy expended for generating heat 37)°C) in addition to that expended for ATP production
- Shivering thermogenesis)ATP utilization): responding to sudden cold with asynchronous muscle contractions
- Non-shivering thermogenesis)ATP production efficiency(

Oxidation-Reduction reactions (Redox)

> Oxidation:

- Gain of Oxygen
- Loss of Hydrogen
- Loss of electrons

> Reduction:

- Gain of Hydrogen
- ✓ Gain of electron
- Loss of Oxygen

D:H

D

- E= redox Potential: it is a POTENTIAL ENERGY that measures the tendency of oxidant/reductant to gain/lose electrons, to become reduced/oxidized
- Electrons move from compounds with lower reduction potential)more negative (to compounds with higher reduction potential)more positive(
- Oxidation and reduction must occur simultaneously

Oxidation-Reduction reactions (Redox)

- $\blacktriangleright \Delta E = E_A E_D$
- $> \Delta E$ =Redox difference of a system in any condition
- ΔE^o =Redox difference of a system in standard condition 25)C^o and 1atmosphere pressure, pH (7 =
 - > Does ΔE determine the feasibility of a reaction?

> ΔG° = -nfΔE°

ΔG is related to ΔE

- > ΔE is directly proportional to ΔG° > $\Delta G^{\circ} = -nf\Delta E^{\circ}$
- > Where:
- n = the number of transferred electron
- F = the Faraday constant (96.5 kJ/volt) (23.06 kcal/volt)
- E = the reduction potential (volts);
- G = the free energy (Kcal or KJ)
 - In other words; energy (work) can be derived from the transfer of electrons

> Or

Oxidation of foods can be used to synthesize ATP

Oxidation-Reduction reactions (Redox)

Always involve <u>a pair of chemicals</u>: an H* electron donor and an electron acceptor)Food vs. NAD(+ -0−P−0−ÇH₂ Nicotinamide NAD⁺ vs. FAD >Н NAD⁺ vs. NADP⁺)fatty acid synthesis and \geq HÔ ÔH detoxification reactions(NH_2 H₃C V-H H₃C -O-P-O-CH CH₂ NAD⁺ O NH₂ н H-C-OH $\mathbf{R} = \mathbf{H}$ Riboflavin H-C-OH ÓR HÔ NADP H-C-OH CH2-O-P-O-P-O-H2C 0

HO

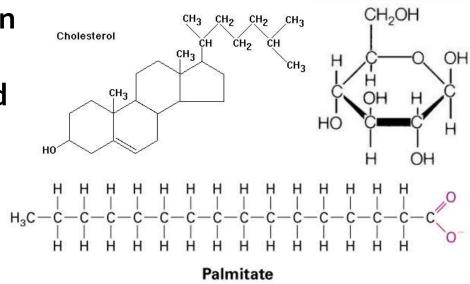
OH

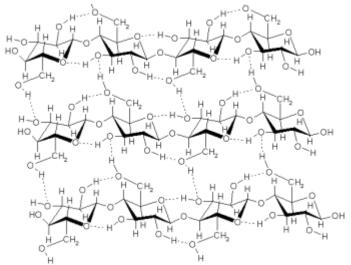
Oxidation-Reduction reactions (Redox)

The more negative the reduction potential, the greater is the energy available for ATP

Table generation Potentials of Some Oxidation-Reduction Half-Reactions

	Reduction Half-Reactions		E ^{0,} at pH 7.0	
	$1/2 O_2 + 2H^+ + 2 e^- \rightarrow H_2O$		0.816	
	Cytochrome a-Fe ³⁺ + 1 e ⁻ \rightarrow cyto	chrome a-Fe ²⁺	0.290	
	$CoQ + 2H^+ + 2e^- \rightarrow CoQH_2$		0.060	
	Furnarate + $2H^+$ + 2 e ⁻ \rightarrow succin		0.030	
	Oxalacetate + $2H^+$ + 2 e ⁻ \rightarrow mala		-0.102	
	Acetaldehyde + $2H^+$ + 2 e ⁻ \rightarrow et	hanol	-0.163	
	Pyruvate + $2H^+$ + 2 e ⁻ \rightarrow lactate		-0.190	
	Riboflavin + 2H ⁺ + 2 e ⁻ → ribofla	vin-H ₂	-0.200	
	$NAD^+ + 2H^+ + 2e^- \rightarrow NADH + 1$	H+	-0.320	
	Acetate + $2H^+$ + 2 e ⁻ \rightarrow acetalde	hyde	-0.468	
NADH + 1/202	→ NAD ⁺ + H ₂ O	FADH ₂ + 1/20	D ₂ → FAI	0 + H ₂ O
NADH	→ NAD+ + 2e ⁻ ∠E ^o = +0.32	FADH ₂	→ FAD + 2e ⁻	⊿ <i>E°</i> = +0.20
O + 2e	$\rightarrow O^{2-}$ $\Delta E^o = +0.82$	O + 2e	→ O ²⁻	$\Delta E^{o} = +0.82$


∆G° ≈ - 53 kcal/mol


∆G° ≈ - 41 kcal/mol

CALORIC VALUES OF FUELS

- > .1Directly related to its oxidation state)∆G°)= the transfer of electrons from that fuel)C-H and C-C bonds) to O2
- .2In humans, the enzymes that oxidizes fuels! Burning of wood

Compound	ΔG ^o (kcal/mol)	Molecular weight	Caloric value (kcal/g)
Glucose	686	180	3.8
Palmitate	2380	256	9-3
Glycine	234	75	3.1

