Blood Transfusion

Abdalla Abbadi.MD.FRCP Prof of Medicine, Hematology & Oncology University of Jordan, Amman.Jordan Email:abdalla.awidi@gmail.com

RBC transfusion therapy Indications

- Improve oxygen carrying capacity of blood
 - Bleeding
 - Chronic anemia that is symptomatic
 - Peri-operative management

Red blood cell transfusions Special preparation

- CMV-negative CMV-negative patients
 Prevents CMV transmission
- Irradiated RBCs Immune deficient recipient Prevents GVHD
- Leukopoor Previous non-hemolytic Prevents tx reaction/CMV
- Washed RBC PNH patients
 IgA deficient recipient

Prevents hemolysis Prevents anaphylaxis

Categories of Transfusion Reactions Acute

- Immunologic
 - Hemolytic
 - Febrile
 - Allergic
 - Anaphylactic
 - TRALI

- Non-immunologic
 - Circulatory Overload
 - Hemolytic
 - Physical
 - Bacterial contamination
 - Air embolus
 - Metabolic reaction

Categories of Transfusion Reactions Delayed (> 24 hours)

- Immunologic
 - Alloimmunization
 - RBC
 - HLA
- Hemolytic
- GVHD
- Post-transfusion
 Purpura
- Immunomodulation

- Non-immunologic
 - Iron overload
 - Viral infections
 - HCV
 - HBV
 - HIV
 - HTLV
 - Other organisms
 - Malaria, Chagas, Babesiosis, etc.

Protocol for ALL acute transfusion reactions

- STOP THE TRANSFUSION immediately
- Maintain IV assess with 0.9% NaCl
- Check blood component for patient ID
- Notify Blood Bank(BB)
- Send blood sample and urine to BB
- Keep blood unit in case culture becomes necessary
- Support patient as necessary

Transfusion-transmitted disease

Risk

- Infectious agent
- HIV
- Hepatitis C
- Hepatitis B
- Hepatitis A
- HTLV I/II
- CMV
- Bacteria
- Creutzfeld-Jakob disease
- Others

~1/500,000 1/600,000 1/500,000 <1/1,000,000 1/640,000 50% donors are sero-positive 1/250 in platelet transfusions Unknown Unknown

Platelet transfusions

- Platelet concentrate (Random donor)
- Pheresis platelets (Single donor)
- Target level
- Bone marrow suppressed patient
- (>10-20,000/µl)
- Bleeding/surgical patient
- (>50,000/µl)

Platelet transfusions - complications

- Higher incidence than in RBC transfusions
- Related to length of storage/leukocytes/RBC mismatch
- Bacterial contamination
- Platelet transfusion refractoriness
 - Alloimmune destruction of platelets (HLA antigens)
 - Non-immune refractoriness
 - Microangiopathic hemolytic anemia
 - Coagulopathy
 - Splenic sequestration
 - Fever and infection
 - Medications (Amphotericin, vancomycin, ATG, Interferons)

Fresh frozen plasma

• Indications

- Multiple coagulation deficiencies (liver disease, trauma)
- DIC
- Warfarin reversal
- Coagulation deficiency (factor XI or VII)
- Dose (225 ml/unit)
 - 10-15 ml/kg
- Note
 - Viral screened product
 - ABO compatible

Vocabulary

- **Gene**: The basic physical unit of heredity -An individual has 2 genes for every trait (one from father, one from mother)
- **Phenotype:** The observable traits of an organism
- **Genotype:** Genetic makeup of an organism
- Allele: One member of a pair of genes that occupies a certain space in the genome (locus)
- LOCUS: A space in the genome occupied by an allele
- **Homozygous:** Having 2 of the same alleles
- Heterozygous: Having 2 different forms of an allele

Blood Group System

A set of variant antigens resulting from alleles of a single locus,

each defining a common serological phenotype.

A, B, & O oligosaccharide antigens (blood groups)

ABO blood types

Blood type	Antigens on RBCs	Serum antibodies
A	A	Anti-B
В	В	Anti-A
AB	A and B	Neither
0	Neither	Anti-A and anti-B

- The antibodies are induced by exposure to cross-reacting microbial antigens present on common intestine bacteria.
- ABO blood-group antigens have subtle differences in the terminal residues of the sugars on glyco-proteins in RBC.
- Providing the basis for blood typing test in blood transfusion

Summary: 29 blood group systems, 40 genes, 707 alleles Also detailed: non-human counterparts for H/h, MN, Rh

System	Locus	Function	Alleles	System	Locus	Function	Alleles	
ABO	ABO e	enzyme	115	Landsteiner-	ICAM4	adhesion	3	
Chido- Rodgers	C4A,	factor	7+	Weiner	(LW)			
	C4B			Lewis	FUT3,	enzymes	36	
Colton	AQP1	channel	7		FUT6,			
Cromer	DAF	receptor	13		FUT7			
Diego	SLC4A1	exchanger	78	Lutheran	LU	adhesion	16	
Dombrock DO	unknown	9		MNS	GYPA,	unknown	43	
Duffy	FY	receptor	7		GYPB,			
Gerbich (Ge)	GYPC	structure	9		GYPE			
GIL	AQP3	channel	2	ОК	BSG	adhesion	5	
H/h	FUT1,	enzymes	57	P-related	A4GALT,	enzymes	27	
	FUT2				B3GALT3			
L	GCN2	enzyme	8	RAPH-MER2	CD151	3		
	(IGnT)			Rh	RHCE,	transport	126	
Indian (IN) CD44	adhesion	2 RHD, RHCG		G				
JMH	SEMA7A	signaling 0			RHAG, RH	RHAG, RHBG		
Kell (with Kx)	KEL,	enzyme	67	Scianna	ERMAP	adhesion	4	
	ХК			Xg	XG,	adhesion	0	
Kidd	SLC14A1	transport	8		CD99 (MI	CD99 (MIC2)		
Knops	CR1	receptor	24+	ΥT	ACHE	enzyme	4	

20th Century Transfusions

1907 Importance of crossmatching blood between donor & recipient

1914 Sodium Citrate proposed as anticoagulant

1936 First Blood Bank: Barcelona, Spanish Civil War

Levine & Landsteiner, Rhesus blood Group System

Aims of Transfusion Centre

• Provision of Blood of the best possible quality and safety for the patient receiving it

 To care for the donor - ensure act of donation does not harm donor

Blood Supply Chain

- Blood Donor Screening Criteria
- Donation Process
- Donation Testing
- Component preparation
- Plasma Products

Blood Donation Process

Blood Donor Criteria

- Age 17-65 (new donors until 60)
- Weight > 50kg
- General health
- Specific illnesses
- Contact with infection

Blood Donation

• 475mls Blood + 63mls anticoagulant

Red Cells

Plasma

Platelets

• Red Cells + Optimal Additive Solution

Saline

Adenine

Glucose

Mannitol

• Expiry date 35 days

Blood Collection and Manufacturing

Plasma/Red Cell Separation

Centrifugation

Plasma expression

Leucodepletion

- Universal leucodepletion introduced in 1999 to reduce the risk of vCJD transmission by blood
- other benefits less febrile reactions, less alloimmunisation, less GVHD, ? reduce immunosuppresssive effects
- Less CMV

Blood Donation Testing

- Microbiology markers
- Blood grouping and screening for high titre antibodies
- Quality monitoring

Transfusion Related Acute Lung Injury - TRALI

- Not rare but under diagnosed
- A potentialy fatal condition
- Presents as pulmonary oedema
- Occurs within 1-4 hrs of starting transfusion

Clinical Features

- Acute respiratory distress
- Fever with chills
- Non productive cough
- Cyanosis
- Hypotension
- Chest pain
- Bilateral pulmonary oedema
- <u>Chest X ray</u> bilateral pulmonary infiltrates in hilar region

CXR in TRALI

Bilateral pulmonary infiltrates in hilar region

Physiologic/Radiographic Features

- PaO₂/FiO₂ < 300 ALI, < 200 ARDS</p>
- Bilateral infiltrates consistent with pulmonary edema.
- No clinical evidence of left atrial hypertension, Pawp < 18 mm Hg.
- ↓ Lung compliance / ↑ Airway
- Positive pressure ventilation via endothracheal tube.

Classical Theory (Immune TRALI)

- Donor antibodies react with patient neutrophils
- Neutrophils sequestrate in pulmonary vasculature
- Complement and cytokines liberated
- Damage to endothelium
- Results in pulmonary oedema

Two Hit Theory (Non-immune TRALI)

Predisposing Conditions:

- Sepsis
- Surgery
- Haematological malignancies
- Trauma

Pulmonary endothelial activation and neutrophil sequestration

Lipids and WBC antibodies activate neutrophils which then causes endothelial damage

Management - TRALI

- No specific treatment
- Largely supportive
- Respiratory support with O₂
- Most cases require mechanical ventilation
- Steroids
- Clinical staff who administer transfusions must be aware how to diagnose & manage promptly

Implicated Donors and Prevention

- Implicated donors are usually "multipara" female due to exposure to paternal leucocyte antigens from the fetus during pregnancy.
- The percentage of women with antibodies increases with increasing number of pregnancies.