Blood (5600 ml "8%" of B.W.)

Plasma (55%)
- Water
- Inorganic S. (ions)
- Organic S. (plasma proteins + others)

Cells (45%)
- RBCs (erythrocytes)
- WBCs (leucocytes)
- Platelets (thrombocytes)

Plasma proteins (conc. 7.2 – 7.4 gm/dl)

<table>
<thead>
<tr>
<th>Albumin</th>
<th>Globulins (α, β, γ)</th>
<th>Fibrinogen</th>
<th>Prothrombin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. 3.5 – 5 (highest)</td>
<td>2.5</td>
<td>0.4</td>
<td>0.01</td>
</tr>
<tr>
<td>M. W 69,000</td>
<td>90,000 – 156,000</td>
<td>340,000 (highest)</td>
<td>68,700</td>
</tr>
</tbody>
</table>

Formation site
Liver + (50% of globulins) in lymphoid tissue (RES)

Functions
- **Osmotic function**
- **Defensive function (γ)**
- **Transport function** (albumin + α, β globulins)
- **Blood viscosity**
- **Blood clotting**
- **Capillary function** – **Buffering function** – **Source of a.a. for tissues**

Albumin / globulin (A/G) ratio: (N. 1.2 – 1.6)
↓↓ A/G ratio: ↓↓ albumin (↓↓ production "liver disease" – ↑↑ loss "kidney diseases") or ↑↑ globulin (infections)

RBCs (Erythrocytes)
- **Count**: ♂: 5.5 million/mm^3 ♂: 4.8 million/mm^3
- **Shape**: biconcave non nucleated discs
- **Size**: 7.2 µ in diameter
- **Volume**: 90 µ^3.
- **Life span**: 120 ± 7 days
- **Fate**: old RBCs are destroyed in (R.E.S) mainly in the spleen

Structure
- (1) **Erythrocyte membrane**: semipermeable, plastic
- (2) **Cytoplasm**: Hb: (34% of RBCs wt.) – K+ – **Carbonic anhydrase** (for CO_2 transport)
 \(\text{NO}^+\) nucleus, \(\text{NO}^+\) ribosomes, \(\text{NO}^+\) mitochondria.
Hemoglobin (Hb)

Molecular weight 64,000
Concentration in RBCs 34%

<table>
<thead>
<tr>
<th>Hb content</th>
<th>Adult ♂: 15-16 gm/dl</th>
<th>Adult ♀: 13-14 gm/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Newly born infants: 19 gm/dl (due to relative hypoxia during IUL)</td>
<td></td>
</tr>
</tbody>
</table>

Structure
Hb molecule is composed of 4 subunits. 4 (heme + polypeptide chain)

<table>
<thead>
<tr>
<th>Types of Hb</th>
<th>1- Adult Hb (HbA)</th>
<th>2- Fetal Hb (HbF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contains 2α & 2 β polypeptide chains</td>
<td>Contain 2 α & 2 γ polypeptide chains</td>
</tr>
<tr>
<td></td>
<td>the main Hb in adults</td>
<td>the main Hb during fetal life & at birth</td>
</tr>
</tbody>
</table>

Abnormal Hb

1. **Thalassemia**
 - (↓↓) or absent α or β chains
 - (due to defects in the globin gene)

2. **Sickle cell anaemia**
 - Abnormal production of α or β chains
 - (due to gene mutation) ⇒ abnormal Hb (HbS)

Chemical reactions of Hb (binds with)

- O$_2$ ⇒ oxyhemoglobin (Fe$^{++}$)
- CO$_2$ ⇒ carbaminohaemoglobin (amino group)
- CO ⇒ carboxyHb (Fe$^{++}$)
- Oxidizing agents ⇒ methaemoglobin (Fe$^{+++}$)

Functions of Hb

1. **Carriage** of O$_2$ & CO$_2$.
2. **Strong buffer** system (6 times that of plasma proteins).

Function of RBCs

1. **Function of the cell membrane**: it encloses Hb.
 - If Hb gets out to the plasma, it will:
 1- Filtered in the kidney ⇒ block renal tubules ⇒ renal failure
 2- ↑↑ viscosity of blood ⇒ ↑↑ B.P. ⇒ ↑↑ Heart work
 3- ↑↑ Colloidal osmotic pr. of plasma ⇒ ↑↑ Heart work.

2. **Function of the cell contents**:
 1. Hb. (mentioned before).
 2. Carbonic anhydrase for CO$_2$ transport as HCO$_3$⁻
 3. NADPH methemoglobin reductase (reduce Fe$^{3+}$ to Fe$^{2+}$)

Each gm of Hb can unite with 1.33 ml O$_2$
The affinity of Hb to O$_2$ is (↓↓) in:
- ↑↑ H$^+$, ↑↑ temperature, ↑↑ CO$_2$, ↑↑ 2,3 DPG

(2)
Erythropoiesis

Definition: Formation of new erythrocytes.

Site of erythropoiesis
- Bone marrow of ends of long bones
- Membranous bones in persons > 20 years
- Liver & spleen in fetus and all bones in children.
- In adults.

Factors affecting erythropoiesis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxia ⇒ stimulation of kidney & liver ⇒ ↑↑ erythropoietin production ⇒ B.M. stimulation ⇒ ↑↑ RBCs production</td>
<td>It is the site of formation of RBCs</td>
<td>It is the site of formation of globin & 15% of erythropoietin</td>
<td>It is the site of formation of 85% of erythropoietin.</td>
<td>Specific: erythropoietin acts locally on BM. Non-specific: thyroid hormones, androgens, estrogens & glucocorticoids stimulate erythropoiesis</td>
<td>Vitamins: B₁₂, folic acid & vit. C Minerals: iron, copper, cobalt. Proteins: of high biological value for globin synthesis</td>
</tr>
</tbody>
</table>

Erythropoietin

Sources: (glycoprotein hormone) - In adults: 85% formed by kidney & 15% formed by liver.
- In fetus: almost formed by liver.

Mechanism of action: Erythropoietin combines with specific receptors on erythropoietin-sensitive stem cells ⇒ ↑↑ number & development of these stem cells in B.M.

Regulation of secretion: (1) Hypoxia (the main stimulant) (2) Alkalosis (at high altitudes) (3) Androgen & estrogen (4) Adenosine (5) Catecholamines (6) Cobalt.
Blood

Iron

Functions
- formation of Hb, myoglobin
- cytochrome
- cytochrome- oxidase, peroxidase & catalase

Absorption
From upper small intestine (duodenum)
Iron is absorbed in the ferrous state by an active process: reduced by HCL & vitamin C
Dietary iron Fe^{3+} (ferric) \rightarrow ferrous (Fe^{2+}) in the stomach

Distribution
- 70% in Hb
- 3% in myoglobin
- 27% in ferritin (in liver & intestine)

Transferrin saturation with iron is 35%

Storage of iron
in liver, spleen & bone marrow.

Haemosiderosis: (excess ferritin deposits in tissues due to iron overload)
Leads to \Rightarrow skin hyperpigmentation, pancreatic damage \Rightarrow diabetes(bronzed diabetes), liver cirrhosis & carcinoma

Deficiency of iron \Rightarrow iron deficiency anemia

Vitamin B12 = cyanocobalamine
Extrinsic factor = Maturation factor

Sources
animal origin (liver & meat) Daily requirement 5 µg

Absorption
from lower ileum
Vitamin B_{12} + intrinsic factor \Rightarrow complex \Rightarrow carried on plasma protein (Transcobalamin II) \Rightarrow liver (stored)

Intrinsic factor is: a glycoprotein, secreted from parietal cells of the stomach important for absorption of vitamin B_{12}:
1- protects B_{12} from digestion by HCL.
2- complexes with B_{12} & binds it to special receptors in the lower ileum mucosa.
3- stimulates endocytosis of B_{12}.

Functions
1- Essential for DNA synthesis, cell division & maturation of RBCs
2- Formation of myelin sheath of nerves.

Deficiency
1- Macrocytic anaemia.
2- Neurological manifestations

Vitamin B_{12} & folic acid are essential for DNA synthesis, cell division & maturation

Deficiency of any of them \Rightarrow DNA synthesis \Rightarrow cell division \Rightarrow failure of nuclear maturation. erythroblasts fail to proliferate \Rightarrow megaloblasts in B.M \Rightarrow megalocytes pass to peripheral blood \Rightarrow macrocytic (megaloblastic) anaemia

Blood

Iron

Functions
- formation of Hb, myoglobin
- cytochrome
- cytochrome- oxidase, peroxidase & catalase

Absorption
From upper small intestine (duodenum)
Iron is absorbed in the ferrous state by an active process: reduced by HCL & vitamin C
Dietary iron Fe^{3+} (ferric) \rightarrow ferrous (Fe^{2+}) in the stomach

Distribution
- 70% in Hb
- 3% in myoglobin
- 27% in ferritin (in liver & intestine)

Transferrin saturation with iron is 35%

Storage of iron
in liver, spleen & bone marrow.

Haemosiderosis: (excess ferritin deposits in tissues due to iron overload)
Leads to \Rightarrow skin hyperpigmentation, pancreatic damage \Rightarrow diabetes(bronzed diabetes), liver cirrhosis & carcinoma

Deficiency of iron \Rightarrow iron deficiency anemia

Vitamin B12 = cyanocobalamine
Extrinsic factor = Maturation factor

Sources
animal origin (liver & meat) Daily requirement 5 µg

Absorption
from lower ileum
Vitamin B_{12} + intrinsic factor \Rightarrow complex \Rightarrow carried on plasma protein (Transcobalamin II) \Rightarrow liver (stored)

Intrinsic factor is: a glycoprotein, secreted from parietal cells of the stomach important for absorption of vitamin B_{12}:
1- protects B_{12} from digestion by HCL.
2- complexes with B_{12} & binds it to special receptors in the lower ileum mucosa.
3- stimulates endocytosis of B_{12}.

Functions
1- Essential for DNA synthesis, cell division & maturation of RBCs
2- Formation of myelin sheath of nerves.

Deficiency
1- Macrocytic anaemia.
2- Neurological manifestations

Vitamin B_{12} & folic acid are essential for DNA synthesis, cell division & maturation

Deficiency of any of them \Rightarrow DNA synthesis \Rightarrow cell division \Rightarrow failure of nuclear maturation. erythroblasts fail to proliferate \Rightarrow megaloblasts in B.M \Rightarrow megalocytes pass to peripheral blood \Rightarrow macrocytic (megaloblastic) anaemia
Anaemia

Anaemia

↓↓ RBCs count: < 4.5 million / mm³ in ♂ & < 3.9 million / mm³ in ♀

↓↓ Hb. content: < 13.5 gm / dl in ♂ & < 11.5 gm / dl in ♀

Blood indices

MCH = Hemoglobin content \times 10 \quad (N. 80 – 95 μ³)

RBCs count

MCHC = Hemoglobin content \times 100 \quad (N. 32-38 gm%)

Hematocrite value

Classification of anaemia

I- According to size & Hb content of RBCs

1. Normocytic normochromic anaemia
2. Microcytic hypochromic anaemia
3. Macrocytic anaemia

II- According to the cause: e.g. hemolytic, iron deficiency, aplastic, ……

1. Normocytic normochromic anaemia

Causes

1. Acute blood loss: (hemorrhage)
2. Aplastic anaemia: ↓↓ RBCs synthesis due to BM destruction by (drugs – malignancy – irradiation)
3. Hemolytic anaemia: ↑↑ hemolysis of RBCs due to:

<table>
<thead>
<tr>
<th>1. Intrinsic disorders of RBCs</th>
<th>2. Extrinsic disorders of RBCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Membrane disorders: e.g. hereditary spherocytosis</td>
<td>1) Antibody causing hemolysis: e.g. erythrobastosis foetalis or incompatible blood transfusion.</td>
</tr>
<tr>
<td>2) Hb. disorders: e.g. sickle cell anaemia.</td>
<td>2) Bacterial toxins</td>
</tr>
<tr>
<td>3) Enzyme disorders: e.g. ↓↓ G6PD</td>
<td>3) Chemicals: e.g. anticonvulsant & antimalarial drugs.</td>
</tr>
</tbody>
</table>

Causes

2. Microcytic hypochromic anaemia (iron deficiency anaemia)

↓↓ iron intake

| Absolute e.g. starvation |
| Relative e.g. in children & in pregnancy(↑↑ iron demand) |

Partial gastrectomy: ↓↓ HCL or vitamin C deficiency

Small intestine diseases (e.g. malabsorption)

↑↑ phosphate, phytate & oxalate intake \Rightarrow insoluble salts with iron

<table>
<thead>
<tr>
<th>Chronic blood loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankylostoma & Bilharziases infestation.</td>
</tr>
<tr>
<td>Bleeding from G.I.T (piles & peptic ulcer)</td>
</tr>
</tbody>
</table>

3. Macrocytic anaemia (megaloblastic anaemia)

↓↓ absorption as in small intestinal diseases & after gastrectomy due to absence of intrinsic factor (pernicious anaemia)

It is an autoimmune disease (antibodies against gastric parietal cells) \Rightarrow achlorhydria & absence of intrinsic factor.

Causes

Vitamin B₁₂ deficiency

↓↓ intake, ↓↓ absorption, ↓↓ demands, antifolate drugs

Folic acid deficiency

↑↑ intake, ↑↑ absorption, ↑↑ demands, antifolate drugs
Platelets

Count (250,000 - 400,000 / mm³)

Half life 4 days

Formation multipotent uncommitted stem cells → committed stem cells for platelets

Distribution 70% in blood & 30% in spleen

Structure Platelets are small, granular, non-nucleated round or oval bodies

1. **Platelet membrane:**
 1. A glycoprotein coat.
 2. Receptors for collagen, Von Willebrand factor & fibrinogen.
 3. Platelet factor 3 (PF₃): important in blood clotting.
 4. Platelet membrane invaginated to form canalicular system

2. **Platelet cytoplasm:** contains contractile proteins & skeleton of microtubules

 - 2 types of granules
 1. **Dense granules:** contain serotonin, ADP & Ca²⁺.
 2. **Alpha granules:** contain:
 1. Clotting factors: factor (XIII) & Von-Willebrand factor
 2. Platelet derived growth factor (PDGF)
 3. Platelet activated factor (PAF)
 4. Prostaglandins – forming enzymes

Diameter 2 - 4 micrometer

Origin in B.M. (from megakaryocytes)

GM-CSF Megakaryocytes

Hemostasis

Definition it is the prevention of blood loss after injury (stoppage of bleeding)

Mechanism

1. **Vascular spasm** (vasoconstriction)
2. **Temporary** hemostatic plug formation (platelet reaction)
3. **Definitive** hemostatic plug formation (blood coagulation)
Blood clot is a network of insoluble fibrin entrapping blood cells, platelets, and plasma proteins. Formation of fibrin clot needs:

- **Clotting factors**:
 - **Nature**: B-globulins.
 - **Site of formation**: Liver (except factor VIII related antigen "VW factor" formed in platelets & endothelial cells).
 - **Functions**: Proteolytic enzymes (activate each other).

Hemostasis

1. **Vascular spasm** (local VC)
 - Nervous reflexes
 - Myogenic spasm of vessels
 - Local VC factors (serotonin & thromboxane A2)

2. **Temporary hemostatic plug formation** (platelet reaction)
 - PLT adhesion
 - PLT activation
 - PLT release reaction
 - PLT aggregation
 - PLT procoagulant activity
 - PLT fusion

 - To subendothelial collagen, PLT swell, put out pseudopodia.
 - PLT release their contents.
 - PLT adhere to each other.
 - PLT membrane phospholipid

 - Irreversible aggregation is caused by ADP, thromboxane A2 & PAF.

3. **Definitive hemostatic plug formation** (blood coagulation)

Classification of Coagulation factors

<table>
<thead>
<tr>
<th>(1) Fibrinogen group</th>
<th>(2) Prothrombin group</th>
<th>(3) Contact group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinogen "factor I", F. V, VIII, XIII</td>
<td>Prothrombin "factor II", F. VII, IX, X</td>
<td>factors XI & XII</td>
</tr>
<tr>
<td>F. V & VIII Not present in serum</td>
<td>All (except prothrombin) are present in serum</td>
<td>Present in serum</td>
</tr>
<tr>
<td>F. V & VIII lose their activity on storage</td>
<td>Stable on storage.</td>
<td>Stable on storage.</td>
</tr>
<tr>
<td>Formed in liver (factor XIII is also formed in platelets)</td>
<td>Formed in the liver & need vitamin K for their formation</td>
<td></td>
</tr>
<tr>
<td>Activated by thrombin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The clotting mechanism

Intrinsic system
- Activated *in vivo* by: exposure to subendothelial collagen
- & *in vitro* by: exposure to –ve charged wettable surfaces

1. XII → XIIa
2. XI → Xla
3. IX → IXa
4. X → Xa
5. Prothrombin → Thrombin
6. Fibrinogen → Fibrin

Extrinsic system
- Traumatized tissue releases tissue thromboplastin

Important notes
- An important reaction in blood clotting is the conversion of soluble protein fibrinogen to insoluble fibrin (fibrin thread formation)
- Loose fibrin (fibrin monomer) → tight fibrin (fibrin polymer)
- Contraction of actin & myosin of the platelets → clot retraction of the tight strands → closes & adheres to the injured vessel wall.
- Ca++ is required for all the reactions of blood clotting except the 1st 2 steps of intrinsic system
- Thrombin activates factor V → acceleration of prothrombin activation → thrombin
- When a critical amount of thrombin is formed → vicious circle develops → more blood clotting
- Blood clotting continues until limiting reactions stop (clot growth)
- Clot is dissolved (by plasmin) to resume normal blood flow after tissue repair
Anticlotting mechanisms

1. **General reactions**: 3
 - Smooth endothelium & rapid blood flow prevent activation of factor XII or platelets.
 - Heparin (a natural anticoagulant).

2. **Specific reactions**: 3
 - Interaction between thromboxane A₂ & prostacyclin
 - Antithrombin III: (a protease inhibitor) inhibits F IXa, Xa, Xla & XIIa (activated serine proteases).
 Its action is facilitated by heparin.

(1) Plasmin (fibrinolysin)
- **Inactive** plasminogen → **active** plasmin (fibrinolysin)
- Fibrin & fibrinogen → fibrin degradation products (FDPs) → inhibit thrombin

(2) Protein C
- Endothelial cells ⇒ thrombomodulin + thrombin ⇒ thrombomodulin–thrombin complex ⇒ activates protein C
- **Active protein C + protein S**: inactivate factors V & VIII.
 - inactivate an inhibitor of tissue plasminogen activator ⇒ ↑↑ plasmin formation.

(3) Fibrinolytic system
- Plasminogen activator (TPA)
- TPA (tissue plasminogen activator)

Anticoagulants

(1) In vitro anticoagulants outside the body
- Citrate: binding Ca²⁺
- Oxalate: precipitating Ca²⁺.
- Silicone coated tubes: (prevent activation of factors XII & platelets)
- Heparin.

(2) In vivo anticoagulants inside the body

<table>
<thead>
<tr>
<th>Anticoagulant</th>
<th>Heparin</th>
<th>Dicumarol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Liver, mast cells & basophiles</td>
<td>Plant origin</td>
</tr>
<tr>
<td>Onset & duration</td>
<td>Rapid onset & short duration</td>
<td>Slow onset & long duration</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Sulphated mucopolysaccharide</td>
<td>Similar to vitamin K</td>
</tr>
<tr>
<td>Antidote</td>
<td>Protamine sulphate 1%</td>
<td>Blood transfusion</td>
</tr>
<tr>
<td>Administration</td>
<td>Injection (I.V. & I.M.)</td>
<td>Oral (by mouth)</td>
</tr>
<tr>
<td>Action</td>
<td>Facilitates the action of antithrombin III (inactivates factors IXa, Xa, Xla, XIIa)</td>
<td>Competitive inhibition with vitamin K in the liver ⇒ inhibits synthesis of factors II, VII, IX, X.</td>
</tr>
<tr>
<td>Site of Action</td>
<td>In vivo & in vitro</td>
<td>Only in vivo</td>
</tr>
</tbody>
</table>
Abnormalities of hemostasis

(1) Excessive bleeding

(1) Vitamin K deficiency

Causes of deficiency:
- Sterility of intestine, as in newborn infants & long-term treatment with antibiotics.
- Absorption as in fat malabsorption because vitamin K is a fat-soluble vitamin.
- Liver diseases.
- Anticoagulants: dicumarol.

(2) Excessive clot formation inside blood vessels

Causes:
- Roughness of atherosclerotic plaques & after operations (slow blood flow)

(3) Both excessive bleeding & intravascular clotting

Causes:
- Retention of dead fetus in the uterus for weeks.
- Septic shock.

Mechanism:
DIC (traumatized tissue)
- Massive production of thromboplastin
- Wide spread clotting (DIC)

Bleeding (due to consumption of coagulation factors)

(3) Thrombocytopenic purpura

Due to ↓ platelet count (< 50,000/mm³ ⇒ symptoms appear)

Characterized by subcutaneous hemorrhages (petechiae) & prolonged bleeding time.

White blood cells (leucocytes)

Count: 4,000 – 11,000 / mm³

Functions of WBCs

<table>
<thead>
<tr>
<th>(1) Neutrophils</th>
<th>(2) Eosinophils</th>
<th>(3) Basophils</th>
<th>(4) Lymphocytes</th>
<th>(5) Monocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Neutrophils: (60 – 70%) of WBCs</td>
<td>1. Attack & kill parasites</td>
<td>1. Contain histamine, heparin & leukotrienes.</td>
<td>1. Formed in B.M., lymph nodes, thymus & spleen</td>
<td>1. Monocytes pass to areas of inflammation soon after neutrophils ⇒ phagocytose & digest bacteria, dead neutrophils & dead tissue.</td>
</tr>
<tr>
<td>2. Eosinophils: (2 – 6%) of WBCs</td>
<td>2. Produce chemical mediators in allergic conditions.</td>
<td>2. Responsible for immediate type hypersensitivity reactions (as urticaria)</td>
<td>2. The key cells of specific immunity (play an important role in defending the body)</td>
<td>2. Precursors of tissue macrophages & together form the monocyte–macrophage system (have high defense & phagocytic function)</td>
</tr>
<tr>
<td>3. Basophils: (0 – 1%) of WBCs</td>
<td>3. Weak phagocytes & show chemotaxis.</td>
<td>3. Have receptors that bind IgE-coated antigens ⇒ degranulation of basophils</td>
<td>3. The key cells of specific immunity (play an important role in defending the body)</td>
<td>3. Precursors of tissue macrophages & together form the monocyte–macrophage system (have high defense & phagocytic function)</td>
</tr>
</tbody>
</table>

(10)