Conduction System of the Heart

Faisal I. Mohammed, MD, PhD
Objectives

- List the parts that comprise the conduction system
- Explain the mechanism of slow response action potential (pacemaker potential)
- Point out the regulation of the conduction system potential by Autonomic Nerves
Structures of the conduction system
Electrical System of the Heart

- Sinoatrial (SA) Node
- Bachmann's Bundle
- Left Bundle Branch
- Conduction Pathways
- Right Bundle Branch
- Atrioventricular (AV) Node
- Anterior Internodal Tract
- Middle Internodal Tract
- Posterior Internodal Tract
Conducting System of Heart

- Sinoatrial (SA) node
- Atrioventricular (AV) node
- Atrioventricular (AV) bundle
- Left and right bundle branches
- Purkinje fibers
- Left atrium
- Left ventricle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Heart Physiology: Sequence of Excitation

1. Sinoatrial (SA) node (pacemaker)
2. Atrioventricular (AV) node
3. Atrioventricular (AV) bundle (Bundle of His)
4. Bundle branches
5. Purkinje fibers

Superior vena cava

Right atrium

Left atrium

Internodal pathway

Purkinje fibers

Interventricular septum
Autonomic Innervation of the Heart

- Cardioinhibitory center
- Cardioacceleratory center
- Vagal nucleus
- Vagus (X)
- Medulla oblongata
- Sympathetic
- Parasympathetic preganglionic fiber
- Synapses in cardiac plexus
- Parasympathetic postganglionic fibers
- Spinal cord
- Sympathetic ganglia (cervical ganglia and superior thoracic ganglia [T₁-T₄])
- Cardiac nerve
- Sympathetic postganglionic fiber
Approximately 1% of cardiac muscle cells are autorhythmic rather than contractile.

- **70-80/min**: Sinoatrial node (pacemaker)
- **40-60/min**: Atrioventricular node
- **15-40/min**: Atrioventricular bundle (Bundle of His), Purkinje fibers

Diagram shows major components of the heart, including the superior vena cava, right and left atrium, and internodal pathway.
Intrinsic Conduction System

Function: initiate & distribute impulses so heart depolarizes & contracts in orderly manner from atria to ventricles.

- **SA node**
- **AV node**
- **Bundle of His**
- **Bundle Branches**
- **Purkinje fibers**
Components of the Conduction System of the Heart

- Conduction system parts are modified cardiac muscle cells consist of:
 - SA (sinoatrial) node (Pacemaker)
 - AV (atrioventricular) node
 - A-V (atrioventricular) bundle
 - Bundle branches (right and left bundle branches)
 - Purkinje fibers
Pathway of Heartbeat

- Begins in the sinoatrial (S-A) node
- Internodal pathway to atrioventricular (A-V) node ??
- Impulse delayed in A-V node (allows atria to contract before ventricles)
- A-V bundle takes impulse into ventricles
- Left and right bundles of Purkinje fibers take impulses to all parts of ventricles
Sinus Node

- Specialized cardiac muscle connected to atrial muscle.
- Acts as pacemaker because membrane leaks Na\(^+\) and membrane potential is \(-55\) to \(-60\) mV.
- When membrane potential reaches \(-40\) mV, slow Ca\(^{++}\) channels open causing action potential.
- After 100-150 msec Ca\(^{++}\) channels close and K\(^+\) channels open more thus returning membrane potential to \(-55\) mV.
Internodal Pathways ??

- Transmits cardiac impulse throughout atria
- Anterior, middle, and posterior internodal pathways
- Anterior interatrial band carries impulses to left atrium.
A-V Node

- Delays cardiac impulse
- Most delay is in A-V node
- Delay AV node---0.09 sec.
- Delay AV bundle--0.04 sec.
Purkinje System

- Fibers lead from A-V node through A-V bundle into Ventricles
- Fast conduction; many gap junctions at intercalated disks
A-V Bundles

- Normally one-way conduction through the bundles
- Only conducting path between atria and ventricles is A-V node - A-V bundle
- Divides into left and right bundles
- Transmission time between A-V bundles and last of ventricular fibers is 0.06 second (QRS time)
Anterior view of frontal section:

1. Sinoatrial (SA) Node
2. Atrioventricular (AV) Node
3. Atrioventricular (AV) Bundle (Bundle of His)
4. Right and Left Bundle Branches
5. Purkinje Fibers

(b) Pacemaker potentials and action potentials in autorhythmic fibers of SA node.

Membrane potential:
- +10 mV
- -60 mV

Action potential:
- Threshold

Pacemaker potential:
- Time (sec)
(b) Pacemaker potentials and action potentials in autorhythmic fibers of SA node

20.10b
Fast Response Action Potential of Contractile Cardiac Muscle Cell

- P_{Na^+} in fast
- $P_{Ca^{2+}}$ in slow
- Plateau phase of action potential
- $P_{Ca^{2+}}$, P_{K^+}
- K^+ out fast
- Threshold potential

Membrane potential (mV)

Time (msec)
Pacemaker and Action Potentials of the Heart
Slow Response Action Potential (Pacemaker Potential)
Intrinsic rate and speed of conduction of the components of the system

- SA node 60-80 action potential /min (*Pacemaker*)
- AV node 40-60 action potential /min
- Purkinje 15-40 action potential /min

Conduction Speed

- SA node: slow speed of conduction
- Ventricular and Atrial muscle: Moderate speed
- AV node: slowest speed of conduction
- Purkinje fibers: Fastest speed of conduction

Ectopic Pacemaker- Abnormal site of pacemaker
Extrinsic Innervation of the Heart

- **Vital centers of medulla**
 1. Cardiac Center
 - *Cardioaccelerator center*
 - Activates sympathetic neurons that increase HR
 - *Cardioinhibitory center*
 - Activates parasympathetic neurons that decrease HR
 - Cardiac center receives input from higher centers (hypothalamus), monitoring blood pressure and dissolved gas concentrations
Pacemaker Function

(a) Normal (resting)
- Heart rate: 75 bpm
- Membrane potential
- Prepotential (spontaneous depolarization)
- Threshold

(b) Parasympathetic stimulation
- Heart rate: 40 bpm
- Membrane potential
- Hyperpolarization
- Slower depolarization

(c) Sympathetic stimulation
- Heart rate: 120 bpm
- Membrane potential
- Reduced repolarization
- More rapid depolarization
- Time (sec)
Autonomic neurotransmitters affect ion flow to change rate

- **Sympathetic** – increases heart rate by $\uparrow \text{Ca}^{+2} \& \text{I}_f$ channel (net Na^+) flow
- **Parasympathetic** – decreases rate by $\uparrow \text{K}^+$ efflux & $\downarrow \text{Ca}^{+2}$ influx

What part of the graph is not changed by autonomic influences?
Effect of autonomic nerve activity on the heart

<table>
<thead>
<tr>
<th>Region affected</th>
<th>Sympathetic Nerve</th>
<th>Parasympathetic Nerve</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA node</td>
<td>Increased rate of diastole depolarization; increased cardiac rate</td>
<td>Decreased rate of diastole depolarization; Decreased cardiac rate</td>
</tr>
<tr>
<td>AV node</td>
<td>Increase conduction rate</td>
<td>Decreased conduction rate</td>
</tr>
<tr>
<td>Atrial muscle</td>
<td>Increase strength of contraction</td>
<td>Decreased strength of contraction</td>
</tr>
<tr>
<td>Ventricular muscle</td>
<td>Increased strength of contraction</td>
<td>No significant effect</td>
</tr>
</tbody>
</table>
Effect of Sympathetic & Parasympathetic Stimulation

[Diagram showing the effects of sympathetic and parasympathetic stimulation on membrane potential over time.]
Regulation of the heart beat

- Sympathetic from the cardiac plexus supplies all parts of the heart (atria, ventricle and all parts of the conduction system)
- Parasympathetic from Vagus nerves supply mainly the atria, SA and AV nodes, very little supply to ventricles
- Sympathetic: increase the permeability of the cardiac cells to Na\(^+\) and Ca\(^{++}\) i.e Positive **Chronotropic** and positive **Inotropic** action
- Parasympathetic: Increase the permeability of the cardiac cells to K\(^+\) and decrease its permeability to Na\(^+\) and Ca\(^{++}\)
- Negative Chronotropic effect and ?? Inotropic effect
- Ventricular Escape and Overdrive suppression-
Time of Arrival of Cardiac Impulse

Main Arrival Times
- S-A Node: 0.00 sec
- A-V Node: 0.03 sec
- A-V Bundle: 0.12 sec
- Ventricular Septum: 0.16 sec
Impulse Conduction through the Heart

STEP 1:
SA node activity and atrial activation begin.
Time = 0

STEP 2:
Stimulus spreads across the atrial surfaces and reaches the AV node.
Elapsed time = 50 msec

STEP 3:
There is a 100-msec delay at the AV node. Atrial contraction begins.
Elapsed time = 150 msec

STEP 4:
The impulse travels along the interventricular septum within the AV bundle and the bundle branches to the Purkinje fibers and, via the moderator band, to the papillary muscles of the right ventricle.
Elapsed time = 175 msec

STEP 5:
The impulse is distributed by Purkinje fibers and relayed throughout the ventricular myocardium. Atrial contraction is completed, and ventricular contraction begins.
Elapsed time = 225 msec
Sinus Node is Cardiac Pacemaker

- Normal rate of discharge in sinus node is 70-80/min.; A-V node - 40-60/min.; Purkinje fibers - 15-40/min.
- Sinus node is pacemaker because of its faster discharge rate
- Intrinsic rate of subsequent parts is suppressed by “Overdrive suppression”
Ectopic Pacemaker

- This is a portion of the heart with a more rapid discharge than the sinus node.
- Also occurs when transmission from sinus node to A-V node is blocked (A-V block).
Ectopic Pacemaker (cont’d)

- During sudden onset of A-V block, sinus node discharge does not get through, and next fastest area of discharge becomes pacemaker of heart beat (Purkinje system).
- Delay in pickup of the heart beat is the “Stokes-Adams” syndrome. New pacemaker is in A-V node or penetrating part of A-V bundle.
Parasympathetic Effects on Heart Rate

- Parasympathetic (vagal) nerves, which release acetylcholine at their endings, innervate S-A node and A-V junctional fibers proximal to A-V node.
- Causes hyperpolarization because of increased K⁺ permeability in response to acetylcholine.
- This causes decreased transmission of impulses maybe temporarily stopping heart rate.
- Ventricular escape occurs.
Sympathetic Effects on Heart Rate

- Releases norepinephrine at sympathetic ending
- Causes increased sinus node discharge (Chronotropic effect)
- Increases rate of conduction of impulse (Dromotropic effect)
- Increases force of contraction in atria and ventricles (Inotropic effect)
Thank You