Objectives:

1) Calculate mean electrical axis using QRS
2) Know the placement of chest leads

For your reference, I will attach three links. One of which is a must watch for you to understand how to calculate QRS in the easiest possible manner; the other two are for ECG in general.

Mean electrical axis

The most important thing to remember is the Einthoven triangle (ECG triangle):

- The center of this triangle is the heart.
- Lead I, II, and III are called bipolar limb leads, because they extend between two limbs.
- The other leads are unipolar leads; they extend from the heart (high resistance, negative electrode) to one of the limbs:
- Heart to right arm: aVR
- Heart to left arm: aVL
- Heart to left foot: aVF
- Based on the triangle, we constitute the hexagonal radial axis. This axis is what we use as a reference line:

- How do we measure the mean electrical axis:
- Take ANY two leads (the easiest are aVF with lead I)
- Measure the height of the QRS complex:
- Count the number of small squares from the bottom of the S until the isoelectric line
- Count the number of squares from the isoelectric line until the top of Q .
- Subtract the number of squares above the isoelectric line from the number of squares below
- If you have 5 squares above and 2 below, the result would be +3
- Repeat the steps for the second lead
- Now, that you have the result, refer to the hexagonal radial axis:
- Locate your lead
- Count the number of units (+3 is equal to 3 units for example)
- Mark the place
- Extend a perpendicular line
- Repeat with the second lead
- Extend a line from the center towards the point of intersection
- Measure the angle using a protractor
- Result analysis:
- 0 to 90: Normal
- 90 to 180: Right axis deviation
- 0 to -90: Left axis deviation
- If you take lead I and aVF:
- If lead I is positive, and aVF positive: Normal
- If lead I is negative and aVF is positive: Right axis deviation
- If lead 1 is positive and aVF negative: Left axis deviation
- If both are negative: extreme deviation
- If you want to measure the exact angle, measure the number of the squares and take its inverse tangent $\left(\tan ^{-1}\right.$ (result))
- Every lead has a lead perpendicular to it:
- Lead I and aVF
- Lead II and aVL
- Lead III aVR
- If there is a certain lead, that has a QRS of 0 (or close to that value), look at the perpendicular lead. The mean electrical axis will be in the direction of that lead.
- Let us say that lead III is almost 0 ; we look at aVR and see if it is positive or negative to know the angle directly
- If aVF is too high and lead I is low: angle closer to 90
- If aVF is equal to lead I: angle is 45
- If lead I is high and aVF is low: angle less than 45
- Tall and thin people have their axis near 90
- Short and obese closer to 0
- This is why we extended our spectrum from -30 to 110

Chest leads

- They are unipolar leads.
- Negative electrode (negative pole) is connected to high resistances (zero terminal)
- Positive electrode is on the chest (exploring electrode)
- It just measures the electrical activity of the transverse plane of the heart.
- It does not have a mean electrical axis as we don't have any known angles
- How do we place the electrodes?
- What we need to know is that every electrode has two coordinates:
- Horizontal
- Vertical
- V1: Right side, at the $4^{\text {th }}$ intercostal space, parasternally (at the sternal border)
- V2: Left side, at $4^{\text {th }}$ intercostal space, parasternally (at the sternal border)
- V4: Midclavicular line at the $5^{\text {th }}$ intercostal space
- V3: Midway between V4 and V2
- V5: Anterior Axillary Line at the $5^{\text {th }}$ intercostal space
- V6: Mid Axillary Line at the $5^{\text {th }}$ intercostal space
- Charges:
- V1 and V2: Negative
- Opposite to their positive electrode (in reference to the mean electrical axis)
- V3 and V4 possibly negative or positive
- V5 and V6: Positive
- Why do we take many leads?
- If someone, for example, has an infarction, we can determine its location using the leads. More leads lead to more accuracy in determining the location.
- Lead I, V3, and V4 aberrant: anterior infarction (LAD)
- V6 and aVF: inferior infacrction (Right coronary artery)
- If the person is fat or if we suspect a problem in the posterior aspect of the heart, we use esophageal leads.

Links! :D

1) https://www.youtube.com/watch? v=KIFqzN5LwH4 Professor Fink, Cardiac physiology, ECG! He covers the whole subject (4 videos, 3.5 hours total)
2) https://www.youtube.com/watch? v=jg5X3 V5IPS4 Mean electrical axis, video 1 (5 minutes review of everything you need to know about how to calculate the MEA)
3) https://www.youtube.com/watch? $\mathrm{v}=\mathrm{f0} 3 \mathrm{n} 3 \mathrm{bhAgZ6E}$ (Mean electrical axis, video 2 (10 minutes review!)
