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Udniferous Tubules

The kidney is composed of large numbers of micro-

scopic units called urintferons tubules. Each tubule is -

composed of two functional regions, the rephron,

the collecting tubule, which concentrates the urine
and conveys it to the calyces (Fig. 13-3).

Nephron

There are over a million nephrons in one kidney.
Each consists of four distinct parts: (1) the renal
corpuscle, which contains the glomerulus, (2) the
proximal convoluted tubule, (3) the loop of Henle,
and (4) che distal convoluted tubule (see Fig. 13-3).
The parts of the nephron form a continuous tubule

~ that measures about 50 mm in length and runs from

the cortex to the medulla and then returns to the
Corfex .

RENAL CORPUSCLE. Tlie renal corpuscle is situated in

the cortex. It is formed by the upper end of the

uriniferous tubule, ‘which is expanded into a struc- .

rure called a Bowman's capsrle (Figs. 13-4—13-7; see

convolured
tubule

,J/ Collecung rubule
(%

1 @&megt

N

v
g
D«:scundmg k
¢ limh '\‘]
#
11“ Opening inro
Loop of Henle J "/ minor calyx
X

Epithelium hining
Bowman's capsule
Endothelium
of capillary
of glomerulus

Cells lining
proximal convoluted

. - ¥
Interior of twbhule

Bowman’s capsule
filled with hlrace
from glomerulus

Fig. 13-3). The renal corpuscle contains the glomer-
ulus, which is a network of capillaries into which
blood enters by an afferent arteriole and leaves

. through a smaller efferent arteriole.
which produces an excretion known as urine, and

The glomerulus indents the wall of the Bowman’s
capsule as a fist might press into the side of a balloon

(Fig. 13-8). The epithelial cells that form the wall of '

the Bowman’s capsule also serve as a covering for

. the glomerulus. The renal corpuscle thus consists

of the Bowman’s capsule and the glomerulus (see
Figs. 13-4—13-7).

The outer wall of the Bowman’s capsule is lined

i with simple squamous epithelium that abrupdy

changes into cuboidal epithelium at the start of the
proximal convoluted tubule. Where the capsular
wall is reflected onto the glomerulus, the squamous

.. cells change into star-shaped cells with muldple !
{ processes. These cells, called podqcytej_.*. T

4"
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Fig. 16.8 Development of the renal corpuscle

in 2 highly schematic mannet the

f the renal corpuscie. The ncphrons

cal metancphros as blind-ended
isti fi idat epithelium.

tubules consisting of a single layer of cuboid ;

The ends of the tubules dilate and become invaginated by 8

tiny mass of tissue which differentiates to form the

2y invaginated ¢pithelium flaticns and
glomerulus. The layer of invaginated ¢pI

differentistes into gg_cﬂcs which become closely 1:22 ied 10
the surface of the knot of glomerular capiilarics.

he
oTervcming connective tissue disappears so that t
hasemeut fnembnne of glomerular endothelial cclis and

This diagrem illustrates
mode of development of !
develop from the embryologi

Invaginating to become
viscerat layer of
- Bowsmnan's capsule

-

Visceral layer
(= podocyte
iayer)

ely fuse forming the glomerular basernent
11 amount of connective lis's{;:e ne\_vcnhelless

i upport the capillary foops and differentiates to
;::x‘;"l‘hsc‘:;fnpoium. WhEre the mcs-n.giur.n smu_:h-iu 4
betwecn Gpilfary loops, its surface is directly investe
cytoplasm with podocyte basement t:ncqxhnnc
lying between the two. \When examining ultra-thin light
microscope specimens s in Figure 16.11 and clectron »
micrographs as in Figure 16.14, the podocytes, u.ldoth.ch "
cells and mesangium are identified most casily by tracing o
the podocyte and endothelial cell basement membranes.

podocytes effectiv

membrane. A sma

Primary process
of podocyre

Secondary
process of
padocyte

Fileration
sht pore

Filtration
barrier

Urinary space

Slic diaphragm

Four of
secondary process

/ Basement membrane

; O .
Frg. 13-11. Structure gf;/,,é;[lrﬂ“.;” Aﬂ"’i‘/’fr)f f(i_nsxliarv of glomerulus

rrimary processes that tighdy clasp the glomerular
‘apillaries (Figs. 13-9 and 13-10). From the primary
rocesses, smaller secondary processes arise that inter-
ligitate with the secondary processes of other po-
loc.ytes. This arrangement leaves small slitike gaps
wtween the processes that measure abour 25 nm

ross and are called s/it pores (Fig. 13-11). The sec- :
dary processes end in feet that are applied firmly
the basement membrane of the capillary wall of |
2 glomerulus. Extending across the slit pores be- I
een adjacent feet is a thin s/it diaphragm about 6 ;
1 thick (Fig. 13-12). ‘
The blood in the glomerular capillaries is sepa-
ed from the cavity of the Bowman’s capsule by:
the fenestrated endothelial cells lining the capil-
ies (Fig. 13-13), (2) a thick basement membrane
g. 13-14), and (3) the slit pores of the podocytes.
gether these sirucham_ﬂ— filtration
rier (see Fig. 13-11). The holes, or fenestrae, in
“endothelial cells permit the passage of plasma
: hold back the cells of the blood. The smaller
lecules of the plasma readily pass through the/

Fenestraged @

endothelial cedl

basement membrane and the slit diaphragm of the
podocytes to enter the cavity of the Bowman’s cap-
sule. Particles with a molecular weight greater than
160,000 are held back by the slit diaphragm. The
plasma protein albumin, which has a2 molecular
weight of 69,000, would be expected to pass
through without difficulty. We know, however, that
in a normal individual, it does not. The probable
explanation is that the fltration mechanism is
blocked by proteins with larger molecules and that
the electric charge on the filter repels the albumin
molecules. The fluid that finally crosses the filtration
barrier and enters the capsular space is called the
glomerular fltrate.

Lying between the glomerular capillaries are small

- groups of star-shaped cells that are and /
These cells are called mes-

angial cells (see Fig. 13-3) and support the capill
walls by producing intercellular substarice. They are
also thgig_h;_t_o remove by phagocytosis any mac- .

“romolecules that escape from the capillaries into the !

tissue space.




Basa!

laming
Endothelium

===

Podocyte

udeus of podocyee

B N Primary processes
of podocytes

Secondary prucesses

of podocytes

Sl pores

Crythrocyre in
capillary of
glomerulus

N
‘enestrated endothelial

cell lining capillary
of glomerulus

Basement membrane

)

Processes of Slit pores
yees

Mesangial celt

Mesangial cells of glomerular cnpillaﬁes. They are located between 2 capillary

TS

Basal
{amina

Endothetium

" Function of the Renai Corpuscle. The raze of blood
flow through both kidneys is abour 1,200 ml per
minute, or about 25 percent of the cardiac output.
The blood enters the glomeruli under high pressure,
and fluid is driven through the filter into the Bow-
man’s capsule (see Fig. 13-3). The fenestrated capil-
laries of the glomeruli form che the
basement membrane, the slit diaphragm, and che slit
pores of the podocytes form the {ultrafilted The
glomerular filtrate differs from the plasma in that it

has almost no proteins. In 24 hours, both kidneys
produce about 180 L of glomerular filtrate; about 99
percent of the hltrate is reabsorbed by the re.nal
tubules, and only 1 percent will be excreted as urine

Podocyte process

ds___Basal lamina

: Cytoplasm of
g D
Vy endothelial cell

lumens, enveloped by the basal lamina’
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Figure 19.7 The vascular structure of the kvdneys (a) An iustration of the
major arterial supply and (b) a séanning electron ‘micrograph of the

glomeruli.
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Figure 19.8 A simplified illustration of biood fiow from a glomerulus to s;n-
efferent arteriole, to tha peritubular capillaries, to the venous drainage of
the kidneys.
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FIG. 15-2 Schemalic dia-
Interiobular  gram of the basic arrange-
ment of nephrons and col-
lecting tubules in a fobule of
the kidney.
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Renal terminology is imprecise and confusing. The struc-
tural unit of a kidney is a lobule. This has a central

core of collecting tubules ~=the medullary ray of the cortexs

surrounded by & sleeve of nephrons draining into these
tubules. There is no line of demarcation between lobules.

As the medullary rays approach the renal sinus, spmce between
them gets 4Less, there is no further space for the sleeve of
_nephrons and cortex changes to medulla. The merging of the
nedullary ray=2 form the pyramids and the pyramids in turn ,
ﬁerge to form the prominent papillae. 7The nephrons near the
ﬁurface have short loops of Henle and are referred to as

Cortical nephrons. Those nephrons lying deeply. at the

bottom of Lhe nephron sleeve are near the medulla, have

long luops of Henle and are referred to as*juxta--medul).ar_y (\_‘D

' riéphr'ons. the short loops of the Cortical nephrons do not reach i
into the medulla. The long loops of the juxta-medullary nephrons |
run into the medulla parallel to the collecting ducts and in [l

association with the vasa r‘ecta.)_( ‘JJ? (\d))

@



URINE FORMATION ‘ v
Diagrammatic ‘

Glomerulus

Glomerular
Filtration

" Filtrate
- Water
=180 liters/day
Renal Tubule ——— .
' ~ . Sodium
and _ "
Collecting Duct , 630 grams/day
Glucose

180 grams/day
Tubular -
Reabsorption
(% reabsorbed)

- - Urea
i’54_grams/day Peritubular

Capillaries

Water
99%

Sodium
99.5%

Glucose
100%

Urea
44% —

If:ésbédrption

Secretion

Urine Excreted

Water
1.8 liters/day

Sodium
3.2 grams/day

Glucose
0 grams/day

Urea
- 30 grams/day
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GLOMERULUS
GLOMERULAR CAPSULE

Parietal Layer

Visceral Layer

Capsular Space

Forces Favoring Filtration :
GBHP =45 mm Hg

Forces Opposing Filtration :

CHP = J0 mm Hg
BCOP = §4 mm Hg

BCOP (Blood Colloid Osmotic Pressure)
is due to the presence of protein
in the plasma (the glomerulus)

but not in the filtrate (glomerular space).

Proximal
Convoluted
Tubule
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FIGURE 6-11. Effccts of con- :
stricting alferent (A) and efferent x
(B) artericles on renal plasma
Now (RPF) und glomerular fil-

traion rate (GFK). P, hydro- T
static pressure in the glomerular
capillary.

."\ X

TABLE 6-5. Effect of Changes in Starling Forces )
on RPF, GFR, and the Filtration Fraction -

7
Flitrotion £ . L .
Fruction {DM/-’T'{ICF(V"& Co

Effect RPF GFR (GFR/RPF) ~

Constriction ol aflerent 1 1 N.C.
arterloie

Constriction of efferent l 1 1
arteriole

Increased plasma protein N.C. 1 1
concentration

Decreased plasma N.C. 1 1

protein concentration

Constrictlon of the ureter  N.C. 1 ]

GFR, glomcrular filtration rate; N.C, no change; RPF, renal
plasma flow. :
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Fig. 13-17. Photomicrograph showing many proximal con-
volused tubules cut in obligue and crost sections. Note that
each tubule is lined with cuboidal epithelizvm anud the cyto-
plasm stains ssrongly with eosin because of the many miro-
chondria (not shown}. The nuclei are centrally placed, and
the luminal cell surfaces have indistinct brush borders formed

ig. 13-6. Photamicregraph of the cortex of the kidney, shotw-

) /! vl di and iinal and distel Juted of microvilli. Three distal conroluted tubules ave also present
glj;:f rId\r"f!o;”f::” l'/ Z’df{}?:f’xéa'TO:/; (. [‘1, &E, -a;u%g ) (D). Note that the cytoplasm of the cubvidal cells lining the
: il e : ! - distal comvoluted tubules stains lighter 1with eosin. (HSE;
x400.)
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FIGURE 32-20 Schematic representation of transport paLh
ways in an idealized proximal tubule. ATP, Adenosine tri-

phosphate

Tubular Bload
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No*
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@

No* l
Antiport .
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K X
H* HCO;

CO, + H;0
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membrane membrane meambrane

FIGURE 32-22 Schematic representation of the proximal -
tubule. For the Na*-X co-transport protéin, X represents
either glucose, amino acids, phosphate, chloride, or lactate.
€O, and H,0 combine inside the cells to form H' and HCO;
in a reaction lacilitated by the enzyme carbonic anhydrase
{CA). ATP, Adenosine triphosphata.
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FIGURE 36-5 Rouites of water reabsorption across the proximal tubule. Transport of Na*, . K'{’ — Cr e
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compartment, which establishes the driving force for osmotic yater reabsorption across the | cml\ce'“

proximal tubule. An important consequence of osmotic water flow across the proximal tu- IOK
bulc is that some solutgs, especially K*, Ca*™*, and Mg**, are entrained in the: reabsorbed iy
fluid and are tt ' ’ R

rereby reabsorbed by the process of solvent drag.
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EARLY PAOXIMAL TUBULE ' _ o

Lumen o Celi of the early proximal tubule Blood

Na*

K+ R

Glucose
Amino acid
Phosphat;. lactate,

or citrate

HCO;3

FIGURE 6-18. Cellular mechanisms of Na* reabsorption in the early proximal tubule. The transépithella] potential difference is the
difference between the potential in tne lumen and the potential In blood, —4 mV. ATF, adenosine triphosphate. :

.

LATE PROXIMAL TUBULE ISOSMOTIC REABSORPTION

Lumen Cell of the late proximal tubule . Cells of the proximal tubule Peritubular
B T = capillary
>
el
- { FIGURE 6—26. Mechanism of isosmotic reabsorption In the

proximal tubule. Dashed arrows show the pathways for reab-
sorption; circled numbers correspond to the text. ., peritubular
capillary colloid osmotic pressure.

‘ D




Proximgat convoluted
tubule

Distal.convolyteg

Glomerutus tubule

Thin scrinent of
loop of Henle

|S.-., Collecting tubule

The thin limb of the Loocp of Henle
(S(;Mtn()

The terminal straight portion of the PCT suddenly changes to the descending thin limb.

With the light microscope, it is usually difficult to distinguish thé™ifferenca batween

: thin limbs ond blood coplilaries, even when they are side by slde, unless the copillories
=— contain red cells. When emply, tha cytoplasm of the copillaries ¢ slightly fFlsnner

thon thaF oF Yhe calls lining the thin limbs, while the nuclel of the thin limb cells are
slightly more prominent in thot they bulge into tha lumen, The difference is quite
marked on exomination with the EM, since the cytoplasm of the cells of the thin limb

not only hove microvilli on their surfaces, are_at least twice as thick as those of
tha copillories. The oppecr almost\yniformly round) while those of tha -
. capillaries are usually oval or irregular in shope.
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. The_loop of Henle r(..lbsorhs ap-
proxnmntel ofthc filtered water. This reabsorption

however, occurslexclusively in the deScending thin limb.

> r@ascentlmg limb is impermeable to Zl'{llL’L;\If_ '
K Z NI &

) 2 L b

Tubular fluid J Blood N o

N(at—H t+ Antiporter

Na* ;‘\
” . \
: o i l : »\LCLM\_
. ../\/éa\/—Hco,-—-———— Al (At M
d H* Wal
; S, + HO ) | WLBSM"% K
f’fsf'f ot //.

Paracellular
diffusion

)

FIGURE 36-7 Transport mechagisms for NaCl reabsorption in the thick ascending limb of
Henle's loop.@'hc lumen positive transepithelial volm@rcsults from the diffusion of K' from
the cell into_the tubular fluid, and plays a major role in driving passive parcellular reabsorp-
tion of cations.

The key element in solute reabsorption by the thick

ascending limb is the Nat-K*-ATPase pump in the baso- The voltage across the thick ascending limb is posi-
lateral membrane (Figure 3G-7). As with reabsorption in tive in the tubular fluid relative to the blood because of
the PTOX"'IN] tubule, thic‘lhanmn&mmuy the unique location of transport proteins in the apical

ascending limb is Ii to the Nat-K*+-ATPase and basolateral membranes. The fmiportant points (o rec-
pump. The operation of the Na™-K*-ATPase pump main- ognize are that increased salt transport by the thick as-
tains « low cell [Na*]. This low [Na*] provides avor. cending limb increases the inagnitude of the positive
able chcm:(. al gradient for_the movement of Na* from voltage in the lumen, and that this voltage (s an im-
the tubular fluid into the cell, The movement of Na* portant driving force for the reabsorption of several
across the apical membrane into the cell is mediated by cations, including Na*, K*, Ca™", and Mg* ", across the

1 a’- -
the INa*-2C17-1K* symporter, which couples the move Pmaca)lulm. Pl 2:7

ment of INa* with 2C1” and 1K™, This symport protein
uses the potential energy released by the downhill move-
ment of Na* and CI™ to drive the uphill niovement of
K* into the cell.fAn Na*-H™ antiporter]in the apical cell

membrane also mediates Na™ reabsorption as well as H* Because the thick ascending limb is very impermeable
secretion (HCO;™ rc.xbaorption) in the thick ascending to wiater, reabsorption of NaCl and other solutes reduces
limb (I‘u,urc 36-7). Na* leaves the cell across the baso- the osmolality of tubular fluid to less than 150 mOsm/kg
lateral membrane via the Na*-K*-ATPasc pump,and K*, H,0. > )(PO ~~~~~~ —_—

Cl7, and IICO* leave, the cell_across the_ basolateral
mcmbrmc by 5cp.u~1tc p'uhw.lys

ok madiazin ‘ - 1 o PP

16 4.
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FIGURE 6-23. Cellular mecha-
nism of Na~ reabsorption in the
early distal tubule. The transepi-
thelial potential difference is —1(
mV. ATP, adenosine triphosphate.

.
J

13-18. Photomicrograph of the medulla of the kidney, .
‘ing numerons(collecting tubuleshand thin segments s of the -
of Henle in cross sectron. 1he collecting tubules are lined

y cuboidal epithelial cells, and the thin segments of the
of Henle are lined with flattened cells. (H&E; X 200.)



5.

T e mechanism ]ozﬂ. N¢+ reabs S pficu

. w e Princple ¢ P
o my. ! (;J:: The w,,,;h,,ﬂ mAZm(-WM-: R the
Nat I » Principle cedds <ondains Nat channds
\ ?Tlﬂ(l[’[l’ ATP 4 — Nat ali\o#\,.;u ‘Um:ugﬂ ‘e channelds
ced K down ks electrochenicnl) cgradiens
—a . “Ffﬂn e Jumen inks Ut cedl
lmj';td Nat U% v txXtruded Rrown "tl/*-L
" celd via the Na* kKt ATPae wa the
{ldfo‘!‘u'CAA-a Mmemlsrane

K? \
/ C‘ﬁfﬂ&bg ‘
L ;:,LD()STaZorJE d&sW\

inciple _cdlls to > Na+t reabsdaphon
rincte s \~+4~ (‘\Cl+ secyretion Y

% Aldostersyie  increases Nat peabsoption ou Ea PT;";;P!T'WS‘ 5 taducing .
m& the Jumisdd membrane et cRanneds o e :zfa[f:&«‘jmg/
mzu&W»’f‘ Nat entry inte U cell o+ Provides mime N

o Nal Kt ATPase —~~s move Nat & pumpe) out &) the ceff >
pamped into the «ld —— N Jaaclludas concendinh an —> /

mae Kt .
The olriufmj Poce Uat"« Kt Seciehion g\m e Celt int bhe Aumen

&Mediy Tabudes
\/\—/\/\/—.—/\/‘ ~
(@ rs Cthe most disead pare 9 the

Wrini ferous Aukude and & MOT pors
th mt{ﬁrm ’
B Each DCT ,,5 a ne/)mm Gms

Canprnuols with A C&Qﬂecﬁ €
thae runs oo Shat arched curse and.

ENTERS @ MED ULy RALHere

A Numbey 4, Shat @l.&cér’ng fubwle s

geine & wmain Colfecty tudnde

passes daon o the Mem:r] rag o
enter e bl Piremict

‘&, baL:UNa_ Ca-U.eCé—iry wd

@ the &%t@ vy %

[N S‘f‘t‘d(ét‘r

. d‘o.’n at  dcute AFHET 1o
papildary ducts that dpen: om the TpEX
renal P"—f"lj‘t fo o~ “;"qf,.,,c.f'%x

redch  fhe

'
th
- ;—;__-.-_r.‘.v A '~_’,¢ i LA REED AL

s are at Hrst
prptlay dects hg

e cetls Aining G Colletbing b
C,LLSOIDIIL’Z ,(/,3,1‘64’ w the é“frzl/?{uc
Rre. ALL COl 11 AR |

[T



SW) Th  celd bodar A Pgular W dew inkcrdigefion
%) The wucle ar  darc ST ;“"7 bt H+ ngh'y(d!mv o gl
P Stdinirg lecause e o rellhively oo Cg{—v]z/mw: gwadhe/é&}
(‘P) o the a‘f‘ﬁ % te rnd 74%(”4_:',{7&&. Ce.[jumw Qfllﬂ{!z'qm
changes o the bimitiand s . LRZ tre winar  Cebyx .

wz** j‘*—é{f"‘éé“ﬁﬁ f“("‘jﬂft‘a““’) wehan wa tha C@mscrvafx'w
" /

Ay Waker A oduchon 6/Cr{am'c Urine . fs O ducis
fmwfé\ e wedadlo " et 1‘2'/: % /7‘7-ﬂ. "‘u/{kty /‘25; 1‘4,.0%

e INCREASINGLY HYPERTONIC ENVIROWNMENT ESTARLISHED Aty
M AINTAINED By THe L0073 i FENLE - T famabdeity oy collechiy ducts &
waler. G Comtrolled & Antidiurche  hevimene Cﬂbf/) Tn  tha P/u“Z‘(( 2
Huwo harmome | the ot dutets leCmuc fermedble 6 water which /5 drag,
Fow the  tubdes (ducts) By OSMOSIS ws the rsule 5 by perton
emvironment weaintnd e wedulley  inBrstbwe TRl L5 o waks
%w{m fadnltsCduct) resubly  Sn o m Comceapaty Prévic wyines T, te
Cabshiee A, ADH — the Ky Sinor Gcvaty oo Tapmn i
—/_b"v:w L’»(,'\&-bLihS‘u o Krngon 19 EM{/{{/) /ﬂLﬂfﬁ‘Q/{S CPrrol.u.ma\ O’Z) e ‘Lﬁfor::;&;
- ikt Cript s Serire Achgole i pine o T TRl R

How d(;eg e K:’c@nef/ f’rod?vlcc a}-,'ng —6&,1_(_%

moe  Concenfrated than blood ‘V’ Wﬁrli‘ Aef{-er;(‘y%_zj__'*"»'

/&"39\ the Urine OSmoﬂdr/{j w Ld [).C ‘9?

Ee'/m(’,m bur e Y4 Partwers within e REWAL HEAKLLA
‘ ¢ Juct Hend, )
faﬂwhvgmgﬁz;o« ek ‘AW'OZ& ‘%c) //“)BH “
- Url'nt ‘beCMES /&g,oEIOJMo‘h'C , on the /”/\éjén(<_ 08
ps b tubibe Fuid Penos don b LTl
f.duc‘fs_;, U © expored o interse nel 1%4/(}
/ncr(dsl'r\g,%/ /é\j'/llfo)mo_OAr;z‘y (/fe the Cﬁ'f"Co'/.-’»n‘ﬂwA?
Gtad (ent oo mosw[L. > 600 > 900 —> 1200) 5 \gager™
rabsorped  Unhl e fubudar i LguilGrates  OSpa
Wit Surroundling  intershn'd Fuiot - Tl %h'\_a ,
osmdarit) , v the [rntnce 4 ADH wild (e <4 ) =
the oSmolarity b Che bend o) the »&ﬂf]/) 7N Henle

: (l‘lm.) 'WO‘-”/L') o

LS St

(TS



1"

NGt ad bssiption
~ J

?WXI;Z.(;QMZC - 65‘/ ~ 47'/
(PCT) (7
Tinin |descending] .
Segment ; >< 157/

ffb Henles 1/67)]0 ("Zf%e})we

i enl@’ﬁt
ﬁff:nﬂcs MA Ug if/\ : X &4
iy —T Cimpramestls

:Lt\s”rdﬁ convollute / 10/
mbude (eandy ¢ 51/
Pate) g/:)zéfii o?cffded N}
(aecking Fulodes yt. 77
¥ ek }ﬂDH Y\et«o&c[f
T o o majer Solute o dubdu fluid

‘n e Hain mcmﬁmﬁ Limb

p b Pfa.c
s @—9 /S tkwtf"\—so&at{ C%Mb N ‘@é‘AJ
HYe 'McJ.u,M)rj Colleching Auct

the Thin lﬂ imb Ha 3 IPA ok

N ’?Zch»f:W:MWm pramenkl o e than o
A & | Nacd

Nack @radiat acrors the ' U qradient A croff fhe

. tin o Cendivy Lim b Co%chrg dmat .
oL one A ked ()*ﬂ AN e /\u\bSd\f’hm ) Nﬂcﬁ {ly» ‘(}‘ZLF@

<&®g ' ThlicK 6\SCEND;MG LiMfT



inner
» medulla .
L)
zo.:‘
! o"‘!(/ .

Urea )

Thi . . FIGURE 19-18

in ascending Collecting . . N d uri di

limb - duct Mechanism of formanor! of concentrated urine according to
the two-solute hypothesis.

interstitial ® A Overall view of the loop of Henle, distal tubule and col-
fluid lecting duct: The osmolarity of the interstitial fluid at differ-
ent levels of the medulla is shown on the scale at the left.
The tubular fluid leaving the proximal tubule is isotonic. As
the tubular fluid travels through the descending limb of the
loop of Henle, water leaves the descending limb, drawn by
the increasing osmotic pressure of interstitial fluid in the me-
dulla. As a result, the tubular fluid in the descending limb
Urea becomes progressively more concentrated. As the tubular
fluid passes through the thin ascending limb, NaCl, but not
water, diffuses out, so that the osmotic pressure of interstitial
A fluid daeseaees. In the thick ascending limb, more salt is re-
H0 moved by active reabsorption. The tubular fluid entering the
distal wwbule is more dilute than plasma with respect to
NaCl, while urea has been concentrated by the reabsorption
of water. Urea and water diffuse down their concentration

NaCl ~ /
C NeCl gradients as tubular fluid passes through the collecting duct.

H,0

The remaining solutes in the tubular fluid are concentrated -
further by the water reabsorption, and a urine as concen-
trated as the interstitial fluid at the innermost part of the me-
dulla may be formed if ADH levels are high. If ADH levels

" are low, a final urine similar to the dilute urine in the distal
tubule is excreted.
B The two driving forces that generate a high solute con-
centration in the medullary interstitial fluid are the NaCl
gradient between ISF and thin ascending limb, and the urea
gradient between collecting duct and [SF. Water cannot
lcave the thin ascending limb in response to the osmotic gra-
dient, but can be reabsorbed from the collecting duct in the

presence of antidiuretic hormone. \

Iy, two driving forces are at,
-solute vhypothesis " (Figure 19-18,
adient across ihe thm ascending 1
The colleciing duct. Both of .3
y the active reabsorp-
4scending limb. Both gra-~ |
the medullary interstitial .|~
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- TABLE 19-2 Eff"’f‘fcts of Anglotensm I8

wmaw:&wwm —

FUM_:NCTION RESULT
" Acts as afpotent vasoconstrictor | Increased blood pressure :
Facilitates synthesis and release of Resorption of sodium and chloride from lu-
aldostelone - men of distal convoluted /
‘ tubule ;
Facilitates release of ADH - Resorption of water from lumen of collecting ;
tubule
. Increases thirst Increased tissue fluid volume
Inhibits r(?nin release | Feedback inhibition
T |
- Facilitates release of prostaglandins - Vasodilation of afferent glomerular arteriole,
. | thus maintaining glomerular filtration rate




B URINARY SYSTEM
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Fig. 16.26 Renal papilla
(Monkey: Azan X 30)

The renal papilla forms the apex of the
medullary pyramid where it projects
into the calycesl space. The ducts of
Bellini DB, the largest of the collecting
ducts, converge in the renal papilla to
discharge urine into the pelvicalyceal
space CS. The renal pelvis is lined by
urinary. epithelium E, and the wall of
the pelvis contains stnooth muscle SM
which contracts to force urine into the
ureter U.
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Fig. 16.27 Ureter
(TS: Mdsson's trichrome X IBj

The ureters are muscular tubes which
conduct urine from the kidneys to the
bladder. Urine is conducted from the
pelvicalyceal system as a bolus which
is propelled by peristaltic action of the
urcteric wall. Thus the wall of the
ureter contains two layers of smooth
muscle arranged into an inner
longitudinal layer L and an outer
circular layer C. Another outer
longitudinal layer is present in the
lower third of the ureter. The Jumen of
the ureter is lined by urinary
epithelium which is thrown up into
folds in the relaxed state allowing the
ureter to dilate during the passage of a
bolus of urine. Surrounding the
muscular wall is a loose connective
tissue adventitia A containing blood
vessels, lymphatics and nerves.
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Fig. 16.29 Urinary epithelium
(H & E X 480)
Urinary epithelium, also called transitional epithelium or
urothelium, is found only within the conducting passages of
~ the urinary system for which it'is especially adapted,”Th
_plasma membranes of the superficial cells are‘
than most cell membranes and have a highly Grdered
substructure, thus rendering urinary epithelium
impermeable 1o urine which is potentially toxic. This
permeability barrier also prevents water from being drawn
through the epithelium into hypertonic urine. The cells of
urinary epithelium have hi interdigjtating cell jun
which permit great distension of the epithelium without

T GG o I
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URINARY SYSTEM 189
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Fig. 16.28 Bladder 25/
(TS: Masson’s trichrome X 12) -

The general structure of the bladder
wall resembles that of the lower third of
the ureters. The wall of the bladder
consists of three loosely arranged layers
of smooth muscle and elastic fibres
which contract during micturition. Note
the inner longitudinal IL, outer circular
OC and outermost longitudinal OL
layers of smooth muscle. The urinary
epithelium kining the bladder is thrown
into many folds in the relaxed state.
The outer adventitial coat A contains
arteries, veins and lymphatics.

The urcthra, the final conducting
portion of the urinary tract, is discussed
as part of the male reproductive tract in
Chapter 18. .

damage to the surface integrity (see also Figs. 5.16 and
AV )

Urinary epithelium rests on a basement membrane which
is often too thin to be resolved by light microscopy and was
formerly thought to be absent. The basal layer is irregular
and may be deeply indented by strands of underlying
connective tissue containing capillaries. This unusual feature
led early histologists to believe, mistakenly, that urinary
epithelium contradicted the principle that epithelium never
contains blood vessels.
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