AUTACOIDS

Munir Gharaibeh, MD, PhD, MHPE Faculty of Medicine, The University of Jordan April, 2014

AUTACOIDS

Endogenous substances with complex physiologic and pathphysiologic functions; commonly understood to include histamine, serotonin, prostaglandins, and vasoactive peptides. **Local hormones**

Histamine

- Occurs in plants, animals, venoms, and stinging secretions.
- Formed from I-histidine.
- Mediator of immediate allergic, and inflammatory reactions.
- Plays only a modest role in anaphylaxis.
- Gastric acid secretion.
- Neurotransmission.

Histamine

- Stored in granules in mast cells and basophils, and inactivated.
- Immunologic Release:
 - IgE and antigen interaction causes explosive degranulation and release of histamine, ATP, and other mediators.
- Chemical and Mechanical Release:
 - Drugs like morphine and tubocurarine.

Molecular Actions of Histamine

- G Protein Coupled Receptors:
- H 1, H2, H3, H4 types, no subfamilies.
- Activation of H1 receptors (in endothelium, smooth muscle cells, and nerve endings), elicits inositol triphosphate(IP3).
- Activation of H2 receptors(in gastric mucosa, cardiac muscle, and some immune cells), increases cAMP

Histamine Receptors

G-protein coupled receptors (GPCR)

- $\mathbf{H_1}$: smooth muscle, endothelium, brain (post-synaptic)
- **H₂:** gastric mucosa, heart, mast cells, brain (post-synaptic)
- $\mathbf{H_3}$: presynaptic, mostly in neural tissue
- **H**₄: bone marrow & blood WBC

Pharmacologic Effects of Histamine

- Satiety effect
- Decrease BP and increase HR.
- Constricts bronchial muscle.
- Stimulates GI smooth muscle.
- Stimulates gastric acid secretion.
- Triple Response: intradermal injection causes red spot, edema, and flare response.
- Pain sensation.

Histamine Antagonism

- Physiologic Antagonism:
 - Epinehrine
- Release Inhibitors:
 - Cromolyn
 - Nedocromil
- Receptor Antagonists:
 - H1 antagonists
 - H2 antagonists

H1 Receptor Antagonists

- Reversible competitive binding to H1 receptors.
- Known long time ago, 60 years.
- Used in the treatment of allergy.
- Available without a prescription, both alone, or in combination as 'cold preparations" and 'sleep aids"

H1 Receptor Antagonists

- First Generation:
 - Strong sedatives because they can cross BBB.
 - Have autonomic blocking effects
- Second Generation:
 - Less lipid soluble, so not sedative.

Pharmacodynamics of H1 Antagonists

Sedation:

- Very common with first generation agents.
- Varies among agents and patients.
- No abuse potential.
- Can cause stimulation and convulsions at high doses.
- Antinausea and antiemetic actions
- Antiparkinsonism effects
- Anticholinergic effects.
- Alpha blocking effect
- Serotonin blocking effect
- Local anesthesia

ANTIHISTAMINE	Dosing hrs	Actions		
Ethanolamines Diphenhydramine (Benadryl)	4-8	Strong Sedative Strong anti-cholinergic Anti-motion sickness		
Ethylaminediamines Pyrilamine (Neo-Antergan)	4-6	Mild anti-cholinergic Moderate sedative GI side effects		
Piperazines Hydroxyzine (Atarax) Cyclizine (Merezine)	4-8 24	Strong sedative; anxiolytic Mild sedative Anti-motion sickness		
Alkylamines Brompheniramine (Dimetane) Chlorpheniramine(ChlorTrimeton)	4-6	Mild anti-cholinergic Mild sedative In OTC Cold preparations		

ANTIHISTAMINE	Dosing hrs	Actions
Phenothiazines Promethazine (<i>Phenergan</i>)	6-24	Strong Sedative Strong Anti-cholinergic Anti-Emetic
Miscellaneous Cyproheptadine (Periactin)	8	Moderate Sedative Mild Anti-cholinergic Anti-serotonergic

Clinical uses of H1 Antagonists

- Allergic reactions:
 - More effective when given before exposure.
 - Sedative effect reduces awareness of itching.
 - Local application may induce allergy by itself.
- Motion Sickness and Vestibular Disturbances:
 Menier's Syndrome.
- Nausea and vomiting of Pregnancy (Morning Sickness):
 - Teratogenic in rodents.

H2 Antagonists

- Breakthrough treatment for peptic ulcer disease(1972).
- Do not completely abolish acid secretion.
- Proton pump inhibitors are more effective.
- Cimetidine.
- Ranitidine.
- Famotidine.
- Naziditine.

Serotonin and 5-Hydroxytryptamine

- Serotonin: a vsoconstrictor released from the blood clot.
- Enteramine: a smooth muscle stimulant found in intestinal mucosa.
- 5-Hydroxytryptamine(synthesized in 1951)

Serotonin and 5-Hydroxytryptamine

- Widely distributed in nature, found in plant
 (Banana) and animal tissues, venoms, and stings.
- Synthesized from L-tryptophan.
- Stored or rapidly inactivated by MAO.
- 90% is found in the enterochromaffin cells of the GIT.
- Also found in platelets, enteric nervous system, nerve endings, and brain.
- Involved in mood, sleep, appetite, temperature control, and pain perception.
- Involved in depression, anxiety, migraine,

Serotonin(5HT) Receptors

- 7 subtypes (5HT₁ to 5HT₇)
- 5 HT_3 : member of nicotinic/GABA_A family of Na⁺/K⁺ channels
- All others: GPCR

Subtype	Tissue Distribution	Signaling Mechanism	Agonist	Antagonist
5-HT _{1A}	CNS	Gi,↓cAMP		
5-HT _{1B}			Sumatriptan	
5-HT _{1D}			Sumatriptan	
5-HT _{1E} 5HT- _{1F}				
5HT- _{1P}	Enteric NS	Go, slow EPSP		
5-HT _{2A} 5-HT _{2B}	Platelets, smooth muscle, CNS Stomach	Gq,↑IP3		Ketanserin
5-HT _{2C}	CNS			
5-HT ₃	CNS, sensory & enteric nerves	Na ⁺ /K ⁺ channel		Ondansetron, Granisetron
	Herves			Tropisetron
5-HT ₄	CNS & myenteric neurons, smooth muscle	Gs,†cAMP	Cisapride	
5-HT ₅	CNS	↓cAMP		
5-HT _{6,7}	CNS	Gs, ↑cAMP		Clozapine

Pharmacologic Effects of Serotonin

Nervous System:

- Melatonin
- Chemoreceptor Reflex(Bezold-Jarish Reflex): activation of 5-HT3 receptors in coronary arteries, leads to hypotension and bradycardia.

Respiratory System:

Bronchoconstriction and hyperventilation.

Cardiovascular System:

- Vasoconstriction.
- Vasodilation in skeletal muscles and coronary arteries. Intact endothelium is required
- Platelets aggregation.

Pharmacologic Effects of Serotonin

GIT:

- Stimulation and diarrhea.
- Carcinoid Syndrome: due to a tumor of the enterochromaffin cells.

Skeletal Muscle:

- Serotonin Syndrome:
 - Potentially fatal.
 - Skeletal muscle contractiona nd hyperthermia
 - Due to excess serotnergic activity.
 - Predictable, not idiosyncratic.

Clinical Uses of Serotonin Agonists

Serotonin:

Has no clinical application.

Buspirone:

5HT1A agonist, anxiolytic, nonsedating.

Triptans:

- 5HT1D/1B agonists
- First line drugs for migraine headache.

Cisapride:

5HT4 agonist used only in gastroesophageal reflux.

Tagaserod:

5HT4 agonist

• Fluoxetine:

SSRI, used in depression.

Serotonin Antagonists

- Phenoxybenzamine:
 - An alpha blocker
- Cyproheptadine:
 - 5HT2 and H1 blocker.
 - Useful in carcinoid and serotonin syndromes.
- Ketanserine:
 - 5HT2 blocker, antihypertensive agent.
- Ritanserine:
 - 5HT2 blocker, prevents platelets sggregation.
- Ondansetron:
 - 5HT3 blocker, used to prevent nausea and vomiting of cancer chemotherapy.