Antagonizing the PTH:-

- As Ca²⁺ rises the secretion of Parathyroid hormone falls while calcitonin rises.
- Calcitonin is a protein hormone; about 32 amino acids.
- The activity of calcitonin resides in the middle of the amino acid chain.
- The calcitonin receptor is similar to the PTH receptor.
- Calcitonin antagonizes the action of PTH by decreasing Ca²⁺ level in a way.
- Calcitonin is produced by parafollicular cells in the thyroid gland.
- Calcitonin is also present in the nervous system as a neuromodulator similar to somatostatin.
- The activity of calcitonin is similar to the activity of PTH on the phosphate (decreases phosphate level in plasma).
- You may wonder that calcitonin normally is not that important, so when you remove the thyroid gland parafollicular cells will be removed; therefore no calcitonin, but there will be no change in the Ca²⁺ level. (Ca²⁺level is not affected when calcitonin is absent). Sometimes there is thyroid cancer leading to hyperactivity of parafollicular cell; therefore more calcitonin will be secreted, but also Ca²⁺ levels will not change. (Ca²⁺level is not affected when calcitonin is over secreted).
- There is calcitonin from the salmon fish, it functions in a very good manner in humans. Therefore calcitonin is not that important hormone.
- Calcitonin functions both on kidney tubules and bone.(affecting both Ca^{2+} and PO_4^{3-}).

Similar to the growth and even more, many factors are involved in bone formation and Ca²⁺ metabolism.

Parathyroid, GH, Vit.D, Calcitonin, Cortisol, Somatomedin, TH, Insulin, Insulin like growth factor-1, estrogen, epidermal growth factor, platelet derived growth factor, fibroblast growth factor, osteoclast activating growth factor, prostaglandin.

Physiology Lecture #11

- **Phosphate**, 85% is in the bone. *(functions of PO*₄³⁻ *in the body?)*
 - 1- Part of intracellular buffer system.
 - 2- Constituent of the bone.
 - 3- Important constituent of variety of macromolecules such as (nucleic acids, phospholipids, metabolic intermediates and phosphoproteins).
- If phosphate decreases in plasma, first PTH is inhibited (because of increase in Ca^{2+} and decrease in PO_4^{3-}) Second, activation of enzyme in the kidney (1-alpha hydroxylase) to produce 1,25-(OH)₂ D_3 acts on the intestines and also on the bone to increase the absorption of both Ca^{2+} and PO_4^{3-} .
- Metabolism, of Ca²⁺, PO₄³⁻ and Mg²⁺ are essential for life.
- Complex system acts to maintain normal body fluids content and ECF levels of these minerals to face environmental and internal changes.
- Organs and hormones that are important in the homeostasis of Ca^{2+} , PO_4^{3-} and Mg^{2+} (PTH, Vit. D, Calcitonin and other hormones) (organs : GIT, kidney, liver and skin).
- Rickets, very rare nowadays, occurs mainly in children as a result of Ca^{2+} and PO_4^{3-} deficiency in the plasma (due to lack of Vit. D rather than a dietary lack of Ca^{2+} or PO_4^{3-})
- Occurs usually in spring months.
- Daily requirement for Vit. D is very minimal
- deficiency of Vit. D is very rare.
- Sometimes your body stops functioning and building Vit. D, you need several years to appear with symptoms of osteomalascia (similar to rickets but in adults).
- You have contents of Vit. D sufficient for several years, because a lot Vit. D is present in adipose tissue.
- Osteomalasia or adults rickets: Serious deficiency of both Vit. D and Ca²⁺ occasionally occurs as a result of steatorrhea (failure to absorb –a kind of diarrhea-).
- Vit. D is fat soluble and Ca tend to form insoluble salt with fat consequently in steatorrhea both Ca²⁺ and Vit. D tend to pass into the

Physiology Lecture #11

feces under these conditions an adult occasionally has such poor calcium and phosphate absorption that adult rickets can occur, though this almost not proceed to tetany - but often it's a cause of severe bone disability . so almost similar to rickets in children but the cause is different , because there is no time for the absorption of Ca^{2+} and Vit. D due to steatorrhea.

- The most important or the most common of all bone diseases in adults is **osteoporosis** especially in old age and in women. It differs from osteomalacia and rickets, it results from diminished organic matrix rather than abnormal bone calcification.
- Usually in osteoporosis the osteoblastic activity in the bone is less than normal. Mineralization is less in osteoporosis and they don't know exactly what is the cause!!!
- Probable causes of osteoporosis:-
 - Lack of physical stress on the bone because of the inactivity.
 (Why inactivity causes osteoporosis? We don't know)
 - 2- Lack of Vit. C.
 - 3- Malnutrition to the extent that sufficient protein matrix can't be formed.
 - 4- Postmenopausal lack of estrogen secretions.
 - 5- Old age in which many of the protein anabolic functions are poor.
 - 6- cushing syndrome: because massive quantities of glucocorticoids cause decrease deposition of proteins.
 - 7- Acromegaly because of excess adrenocortical hormones and Lack of insulin because of diabetogenic effect of GH.

Drugs used to prevent the development of osteoporosis:-

- Estrogen is the best drug till now used against osteoporosis.
 - 1- Estrogen (have other advantages especially for ladies after menopause) >> the best.
 - 2- Calcitonin, this is synthetic (or taken from salmon fish); 10 times stronger that the human calcitonin.
 - 3- Biophosphonates, becoming popular nowadays; potent inhibitor of bone resorption.

Physiology Lecture #11

- 4- PTH (available as injectable treatment by stimulating osteoblastic formation, also decrease the rate of fractures).
- 5- Vit. D and Ca^{2+} .