Extra notes for lab- 1 histology

<u>Slide 1:</u> cross section in the elastic artery (aortic arch , ascending aorta , descending aorta)

- twin of ascending aorta is the pulmonary trunk. Ascending aorta represents the cardiac output from the left ventricle.
- -Elastic artery in this section is stained by H and E >> we cannot differentiate between the different components especially of the media (smooth muscle , collagen , elastic) because it is at low magnification .
- The main part in this section(aorta) is the media .
- <u>Slide 2</u>: here , at larger magnification . we can see that media contains nuclei of smooth muscles and the cytoplasm is located around the nucleus .
- We can't differentiate between collagen, elastic laminea and smooth muscle .
- Elastic laminea are in the form of wavy lines (cut crosswise)
- Using H and E, difficult to differentiate smooth muscle collagen and elastic .
- How can we define the smooth muscle? they are around the nucleus.
- * In the exam, the Doctor may points to the nucleus and ask you that this nucleus or cell (smooth muscle cell) produces the surrounding tissues?

True >> collagen and elastic tissues are produced by smooth muscle cells

- Function of the elastic tissue (which is the major component of the media) :
- 1) expand during systole and recoil during diastole >> converts intermittent blood flow produced by left ventricle (intermittent because the blood is pumped only during systole) to continuous blood flow.

2) maintains the diastolic blood pressure

Slide 3: another larger magnification

- -We can see the nuclei of smooth muscle cells surrounded by cytoplasm.
- -Also, we cannot differentiate between collagen and elastic

<u>Slide 4 :</u>

- -Vasa vasorum: Blood vessels in the adventitia (vessel of the vessel).
- -Function of vasa vasorum is to supply the adventitia with blood, nutrients and O2 (because it can't be done by diffusion).
- -Vena cava which is large vein with thin wall needs vasa vasorum more than artery because the blood inside it is poorly oxygenated and contains little nutrients.
- So , it depends on the thickness of vessels (+ve) and much more on the blood and nutrients inside these vessels (ve) .
- -Artery is riched by blood and nutriens >> little of vasa vasorum
- -Elastic artery contains vasa vasorum more than muscular artery >> because elastic artery is thicker than muscular artery
- -Large veins have less blood and nutrients >> more vasa vasorum
- <u>Slide 5</u>: here we used differential stain which is Masson's trichrome stain
- -It stains elastic fibers black (we can see that black color is predominant in the media because elastic tissues is the major component of the media).
- -It stains collagen bright green and stains smooth muscles red.

Slide 6: this is at larger magnification.

- Black wavy lines are elastic laminae cut crosswise and in between there is little green (collagen) and red color (smooth muscles).

- -By this trichrome stain we make sure that the media is consist of 3 components and the major one is fenestrated elastic lamina (40-70 layers).
- -May be in the exam . which of these color is responsible for maintenance of diastolic blood pressure ? black color (elastic tissue)
- -Which of these color responsible for production of these components ? red color (smooth muscles).

Slide 7:

- -The media is mostly black (elastic tissue) while the adventitia is mostly green because its mostly collagen with some elastic fibers.
- -Also here we see a small blood vessel which is vasa vasorum.

Slide 8: here we used another differential stain (Van Gieson stain)

- Here it is not carefully stained
- -It stains elastic laminae blue to black
- -It stains smooth muscles yellow to brown
- -It stains collagen red

Slide 9: here we have it at higher magnification and carefully stained.

-We can see many elastic laminea (black color)

Slide 10:

- Here we will compare medium sized artery and vein placed beside each other .
- -Medium sized vein >> large lumen , then collapsed wall , the major and thickest layer is adventitia , media is less thick .
- -Medium sized artery or muscular artery >> small lumen , thick wall , the major and thickest layer is media , adventitia is nearly equal or less than the media .
- -We call these medium sized arteries distributing arterties :

- When smooth muscle constricts under the effect of sympathetic NS > constriction of lumen decreases blood flow or passing
- when smooth muscles relax or dilates > incease blood flow or passing.
- -We call these medium sized vein capacity veins :

Accommodate large volume of blood under low pressure(<u>compliant</u>مطاوعة)

- Which makes it compliant (high expand, little recoil)? presence of numerous collagen in the adventitia.

Slide 11: at higher magnification

- -We can recognize smooth muscle from the nucleus . each dot and it's surrounding represent a smooth muscle .
- -Again, In the artery the adventitia is nearly equal or less than the media, while in the vein the adventitia has the major thickness.

Slide 12: at higher magnification of medium sized artery

- -Small dots (nuclei of endothelium) > intima > little sub endothelial tissues > tortuous line (internal elastic lamina) .
- This line distinguishes muscular artery but may be seen in the veins . This line also separates intima from media .
- -Many smooth muscle layers (more than 10)
- ARTERIOL (1-4 LAYERS), SMALL ARTERIOL (ONE LAYER)
- we can see little of adventitia
- external lamina is not clear . mostly when there is one or two layers of internal elastic lamina , external elastic lamina will be more layers So, we say internal elastic <u>lamina</u> and external elastic <u>laminae</u>

Slide 13: here at higher magnification.

- -Typical medium(muscular) sized artery .
- -Dots are nuclei of endothelium.
- -Tortuous line is internal elastic lamina which is outer board of intima .
- -Media is consist of numerous layers of smooth muscles > artery (never an arteriole) .

- -The space between smooth muscle layers is much little , while in veins the space large due to the presence of collagen
- -We can see outer board of the media which are external elastic <u>laminae</u> That's why we say typical because we can see both internal lamina and external laminae.
- -Smooth muscles in the wall of artery r richly supplied by sympathetic NS

Slide 14:

- Clear internal elastic <u>lamina</u> and unclear external elastic <u>laminae</u>, in between of them media and adventitia.

<u>Slide 15</u>: same as previous slide but at higher magnification.

Slide 16: muscular artery stained with Masson's trichrome.

- -We can see both internal and external elastic laminae (many dense black layers) at each outer boarder of the intima and media of the muscular artery .
- Sometimes, internal elastic may be bifid > so we call laminae.
- Red color in the media > smooth muscles
- Green color in the media > collagen
- Little worm like black lines in the media > elastic fibers.

Slide 17: we return back to the medium sized vein

- Intima is not clear
- Media is less thick
- Adventitia is more thick
- * Both media and adventitia are filled with collagen
- * Difference between collagen and elastic ?
 Collagen > expand with little recoil (compliant property)
 Elastic > expand and recoil

Slide 18:

-We can see incomplete internal elastic lamina

- -Media > consists of 3 layers of smooth muscles and collagen in between -Adventitia > major layer , rich in collagen .
- Medium sized veins in the body stored about 65% of blood, because they diastole large volume of blood under low pressure (compliant).
- veins are more compliant than artery.

Slide 19:

Arterioles and venules are similar to their parents , the muscular artery and vein respectively .

Large Venule

- → Large lumen , thin wall (while arteriole has small lumen , thick wall)
- → Post capillary venules are formed by the union of several capillaries .
- → Diameter is from 10-50 . toward 50, will appear of smooth muscles in the wall .
- → Large venule >>> has incomplete layer of smooth muscles
- → Small vein >>> has complete layer of smooth muscles
- → Both small and large venules have same function , which is similar to capillaries > > exchange of substances across the wall of venule . but the most important function is diapedesis (movement of WBCs from blood to tissues via wall of venules) .

Large arteriole

- → Arteriole could be small (one layer) or large (4-5)
- → Small lumen and thick wall .
- → We can see Internal elastic lamina (tortuous line), but we can't See in small one.
- → We can see Media and adventitia.
- → Most important feature of arteriole that it's circular smooth muscles when contract >>> narrow lumen >>> increase resistance to the blood flow (not to prevent passing of blood to the tissues , but for production of pressure gradient from 93 to 37) . so we call it <u>major resistance</u> vessel

These smooth muscles are richly supplied by sympathetic innervations.

- → Pre capillary sphincter and met arterioles are poorly sympathetic , They are influenced by metabolites more than sympathetic innervations.
 - Peripheral resistance maintains arterial blood pressure.
 - Veins and arteries have a little resistance . the major one is small arterioles .
 - Small arterioles is the major one that responsible for resistance because it is already contracted, but large arterioles contract during sympathetic innervations.
 - Cardiac output depends on both blood flow and resistance.
 - If patient comes to the hospital with extensive decrease in blood pressure 70/30 (shock, may be comma), first we must ask for his history.
 - if he suffers from excessive loss of fluid and blood as in duodenal ulcer (here in duodenal ulcer we can't see the bleeding because it is internal, but can we use blood pressure as an indicator) >>>>treated by giving him fluid and blood.
 - if he suffers from sensitivity to certain drug as penicillin , here the decrease in blood pressure is due excessive vasodilatation produced by anaphylactic reaction >>> excessive histamine >>> vasodilation >>> decrease blood pressure . treated by antihistamine drugs or drugs act as vasoconstriction .

Slide 20: large arteriole at higher magnification.

- 4 layers of smooth muscles .
- Internal elastic lamina and adventitia.

Slide 21: superficial vein (long saphenous)

- From foot to the end of thigh . during standing >>> compression on the wall of vein >>> become weak .
- compensatory mechanism:
- 1) smooth muscle in media and collagen in between reinforce the wall (when they contract cause constriction of the lumen).

- 2) more important and for further reinforcing, there is a <u>longitudinal</u> smooth muscles in the adventitia (when they contract, constriction of the lumen will not be occur).
- superficial vein has valves and longitudinal muscles in the adventitia.

Slide 22:

Media >>> smooth muscles and collagen .

Adventitia >>> longitudinal smooth muscles cut crosswise .

Slide 23: at higher magnification

Media >>> smooth muscles and collagen.

Slide 24: at higher magnification

Adventitia >>> longitudinal smooth muscles cut crosswise.

Green color >>> collagen

Slide 25: microcirculation

- -Arterioles >>> capillary >>> venules
- -Capillary has very simple structure .
- -We can see nucleus of endothelium surrounded by little cytoplasm
- -We can't see the basal lamina
- -3 types: fenestrated, continuous and discontinuous capillaries.
- -Has 2 ends: arterial (37 mm Hg) and venous (17 mm Hg)

Old theory: at the beginning >>> more filtration than reabsorption, at the end >>> more reabsorption than filtration.

- <u>Pre capillary sphincter</u> is responsible for determining when filtration and reabsorption occur .
- When it opened >>> blood flow from arterioles to the capillaries
 >>> increase blood pressure inside capillaries >>> filtration occur at both ends.
- When it closed >>> less blood reach the capillaries >>> decrease blood pressure inside capillaries >>> reabsorption occur at both ends.

- There are two major forces, blood pressure (driving force by hydrostatic BP) and colloid osmotic pressure (withdrawing force)
- There is a very little plasma proteins in tissues because there is no filtration for them .

Slide 26:

Venules, they have thin wall.

Slide 27: cardiac muscle

Differs from skeletal muscle by the branching fibers

Slide 28:

- we see the muscle fibers branching and this character is not found in skeletal muscles
- In cardiac muscle >>> the fiber consists of group of cells
- skeletal muscle >>> the fiber consist of one cell .
- Group of cells joined together by intercalated disc .
- The most important component of intercalated disc is gap junction.
 Gap junction >>> functional syncytium
- The nucleus of cardiac muscle is single and central placed, while in skeletal muscle it is multinucleated and peripheral placed.

Slide 29:

- Single nucleus central placed
- fiber consists of many cells

Slide 30:

-This is a cross section of the cardiac muscle fibers, the cells that appear without a nucleus are cut at their sides that's why their nuclei don't appear (its located at the center).

<u>Slide 31</u>: intercalated disc with special stain

-We can see branches and lines crosswise which they are intercalated disc . if we look closely we can see cross striations (found in both

skeletal and cardiac muscles) indicates there is fibril >> filaments >> actin and myosin .

- Filaments arranged in the form of sacromere . board of sacromere z-z
- Intercalated discs have <u>desmosomes</u> that connect cell membranes to each other (separate cells from each other) . it also have <u>gap junctions</u> (area of low electrical resistance) and they permit flow of ions (electrical current) between cells .

Slide 32: same as the previous slide

Slide 33: same as the previous slide

<u>Slide 34</u>: purkinje fibers

- Cardiac muscle has two main parts:
 contractile >>> muscle contraction.
 conductive >>> modified or specialized cardiac muscle fibers called purkinje fibers).
- purkinje fibers are various in size.
- The heart has a conductive system for cardiac impulse (action potential): SA node ,AV node , AV bundle ,right and left branches of AV bundles (from which the Purkinje fibers branch), Purkinje fibers .
- Purkinje fiber is the largest and fastest part of conductive system.

Slide 35: at higher magnification

- purkinje fibers are located beneath the endocardium .
- -We can see the nucleus and it might be binecleated.
- -Stained densely at peripheral and slightly at center .
- -Larger and thicker than the normal cardiac muscle.
- -most important characteristic is that it has little fibrils (fibers
- >fibrils> filaments actin and myosin) located at the peripheral and lots of glycogen >>> that's why it stained densely at peripheral .

- desmosomes and gap junction are present.
- T tubules are <u>not</u> present.
- purkinje fibers are numerous in intervenricular septum beneath the endocardium and near to the lumen .
- it's function >>> rapid conduction of action potential to the wall of ventricles .
- * Slide 36 and Slide 37 are same as the previous slide .