Table of Genetic Disorders | Disease | Gene/Defect | Inheritance | Clinical Features | | |--|--|---|--|--| | Achondroplasia | Fibroblast growth factor receptor 3 (FGR3) – constitutively active (gain of function) | Autosomal dominant (normal parents can have an affected child due to new mutation, and risk of recurrence in subsequent children is low) | Short limbs relative to trunk, prominent forehead, low nasal root, redundant skin folds on arms and legs | | | Cystic Fibrosis | Cystic fibrosis
transmembrane
regulator (<i>CFTR</i>) –
impaired chloride
ion channel function | Autosomal
Recessive (most
common genetic disorder
among Caucasians in
North America) | Pancreatic insufficiency due to fibrotic lesions, obstruction of lungs due to thick mucus, lung infections (Staph, aureus, Pseud. aeruginosa) | | | Duchenne Muscular
Dystrophy | Dystrophin (<i>DMD</i>) -
deletions | X-linked recessive | Gradual degeneration of skeletal
muscle, impaired heart and respiratory
musculature | | | Hypercholesterolemia | LDL receptor
(commonly) | Autosomal
dominant
(haploinsufficiency) | Impaired uptake of LDL, elevated levels of LDL cholesterol, cardiovascular disease and stroke. Symptoms more severe in homozygous individuals | | | Fragile X Syndrome | (FMR1) – CGG
trinucleotide repeat
expansion in 5'
untranslated region
of the gene
(expansion occurs
exclusively in the mother) | X-linked dominant
(females less severely
affected)
Inheritance
characterized by
anticipation | Disorder shows anticipation (female transmitters in succeeding generations produce increasing numbers of affected males) Boys with syndrome have long faces, prominent jaws, large ears, and are likely to be mentally retarded. | | | Gaucher's Disease | B-Glucosidase | Autosomal recessive | Lysosomal storage disease
characterized by
splenomegaly,hepatomegaly, and bone
marrow infiltration. Neurological
symptoms are not common | | | Glucose 6-phosphate
dehydrogenase
deficiency | Glucose 6-
phosphate
dehydrogenase | X-linked recessive
(prominent among
individuals of
Mediterranean and
African descent) | Anemia (due to increased hemolysis) induced by oxidizing drugs, sulfonamide antibiotics, sulfones (e.g. dapsone), and certain foods (e.g. fava beans) | | | Hemochromatosis | Unknown gene on
the short arm of
chromosome 6 | Autosomal recessive
(Incidence ~0.3% in
Caucasoid population.
Women less affected due
to increased iron loss
through menstruation) | Enhanced absorption of dietary iron with accumulation of abnormal, pigmented, iron-protein aggregates (hemosiderin) in visceral organs. Cirrhosis, cardiomyopathy, diabetes, skin pigmentation, and arthritis. | | | Holoproencephaly | Sonic Hedgehog
(SHH) | Autosomal
dominant
(haploinsufficiency?) | Malformation of the brain (no or reduced
evidence of an interhemispheric fissure),
dysmorphic facial features, mental
retardation | | | Huntington Disease
(Also Huntington
Chorea) | Huntingtin (HD) –
CAG repeat
expansion within
exon 1 (expansion
occurs in father) | Autosomal
dominant (gain-of-
function mutation)
Shows anticipaton | Disorder is characterized by progressive
motor, cognitive and psychiatric
abnormalities. Chorea – nonrepetitive
involuntary jerks – is observed in 90%
of patients | | | Klinefelter Syndrome | 47,XXY males | 50% of cases due
to errors in paternal
meiosis I | Sterile males with long limbs, small
genitalia, breast development, and
feminine body contours, and learning
disabilities | |---|--|---|---| | Marfan Syndrome | Fibrillin-1 gene (FBN1) encodes a microfibril-forming connective tissue protein | Autosomal
dominant (dominant
negative effect) | Abnormalities of the skeleton
(disproportionate tall stature, scoliosis),
heart (mitral valve prolapse, aortic
dilatation, dissection of the ascending
aorta), pulmonary system, skin
(excessive elasticity), and joints
(hypermobility). A frequent cause of
death is congestive heart failure. | | Myoclonic Epilepsy
with Ragged Red
Fibers (MERRF) | Mitochondrial DNA mutation in the tRNA ^{hs} gene | Maternal
transmission,
heteroplasty | Age of onset varies depending on fraction of mutant mitochondrial DNA inherited. Symptoms include myopathy (disease takes its name from abnormal histological appearance of skeletal muscle biopsies), dementia, myoclonic seizures, ataxia, and deafness | | Myotonic Dystrophy | A protein kinase
gene (<i>DMPK</i>) – CTG
repeat expansion in
3' untranslated
region of the gene | Autosomal
dominant
Shows anticipation | Disorder shows anticipation. Muscle weakness, cardiac arrhythmias, cataracts and testicular atrophy in males. Children born with congenital form have a characteristic open triangle-shaped mouth | | Neurofibromatosis I | Microdeletion at
17q11.2 involving
the <i>NF1</i> gene | Autosomal
dominant | The disorder is characterized by numerous benign tumors (neurofibromas) of the peripheral nervous system, but a minority of patients also show increased incidence of malignancy (neurofibrosarcoma, astrocytoma, Schwann cell cancers and childhood CML – chronic myelogenous leukemia) | | Osteogenesis
Imperfecta | Either of the genes
encoding the a1 or
a2 chains of type I
collagen | Usually autosomal
dominant
(null mutations result in
haploinsufficiency,
missense mutations often
produce a dominant
negative effect | Null mutations produce a milder form of the disease. Missense mutations that act in a dominant negative manner are often perinatal lethal. The disorders are associated with deformed, undermineralized bones that are subject to frequent fracture. | | Phenylketonuria | Usually due to a mutation in Phenylananine hydroxylase (PAH) | Autosomal recessive | Mental retardation, if untreated,
possibly due to inhibition of myelination
and disruption of neurotransmitter
synthesis. Detectable by newborn
screening and treatable | | Polycystic Kidney
Disease | Mutations in either polycystin-1 (<i>PKD1</i>) or polycystin-2 (<i>PKD2</i>) gene | Autosomal
dominant (disease
appears to follow a "two-
hit model", requiring the
loss of both alleles of
PDK1 or PDK2 for the
disease to be evident. | Heterozygous individuals are predisposed to polycystic kidney disease because they are likely to loose the second good copy of the gene during their lifetime. Multiple renal cysts, blood in urine, end-stage renal disease and kidney failure. | | Prader Willi/Angelman
(PWS/AS) | Deletion of the PWS region and AS gene located at 15q11-q13. Can also be caused by uniparental disomy involving chromosome 15 | Complex
Parent of origin
effects due to
genomic imprinting. | Inheriting the deletion through the mother gives rise to Angelman syndrome, which is characterized by short stature, severe mental retardation, spasticity, seizures, and a characteristic stance. Inheriting the deletion from the father produces the more common Pader-Willi syndrome, which is characterized by obesity, excessive and indiscriminate gorging, small hands, feet, hypogonadism and mental retardation. In rare cases, uniparental disomy involving chromosome 15 produces PWS when both copies are inherited from the mother and AS when both copies are inherited from the father. | | |-----------------------------------|---|---|---|--| | Sex Reversal | Variety of causes | Various | See Thompson & Thompson, Medical
Genetics, 6 th ed. | | | Tay-Sachs Disease | B-Hexosaminidase
(A isoenzyme
(<i>HEXA</i>) | Autosomal recessive
(common among Jew of
Eastern European
ancestry and French
Canadians). | Hypotonia, spasticity, seizures,
blindness, death by age 2. An early
indication is a cherry red spot on the
retina. (Incidence greatly reduced by
screening) | | | Thalasemias | | Autosomal
Recessive | Severe anemia | | | Turner Syndrome | 45,X females | Usually due to a paternal error in sex chromosome transmission | Although usually lethal in utero, the defect poses little risk to survival in infants that do come to term. Short stature, webbed necks, broad chest with widely spaced nipples, and sterility. Infants show evidence of lymphedema in fetal life. Intelligence is normal. | | | Xeroderma
pigmentosum | Anyone of nine
genes involved in
nucleotide excision
repair (locus
heterogeneity) | Autosomal recessive
characterized by
variable
expressivity, and
genetic
heterogeneity | Acute photosensitivity, premature skin aging, premalignant actinic keratoses, and benign and malignant neoplasms of the skin, including basal cell carcinoma, squamous cell carcinoma, or both. 5% of patients develop melanomas. Patients also exhibit ocular problems due to UV damage and have a 10- to 20-fold increased incidence of internal neoplasms due to an inability to repair DNA damage by endogenously generated and environmental genotoxic agents. | |