

Nafith Abu Tarboush
DDS, MSc, PhD
natarboush@ju.edu.jo
www.facebook.com/natarboush

Lipids

Lipids – Definition & General Properties

 A heterogeneous class of naturally occurring organic compounds formed mainly from alcohol & fatty acids combined together by ester linkage

- They are Amphipathic in nature
- Insoluble in water, but soluble in fat or organic solvents (ether, chloroform, benzene, acetone)
- They are not all fats! They include fats, oils, waxes & related compounds
- They are widely distributed in nature both in plants & in animals

Lipids – function & biological importance

- 1) They are storable to unlimited amount (carbohydrates)
- 2) They have a high-energy value (25% of body needs) & they provide more energy per gram (carbohydrates & proteins)
- 3) Supply the essential fatty acids
- 4) Supply the body with fat-soluble vitamins (A, D, E & K)
- 5) They are important constituents of the nervous system
- 6) Tissue fat is an essential constituent of cell membrane (mainly phospholipids in nature that are not affected by starvation)

Lipids – function & biological importance

- 7) Stored lipids are in all human cells & acts as:
 - A. A store of energy
 - B. A pad for the internal organs
 - C. A subcutaneous thermal insulator against loss of body heat
- 8) Lipoproteins are important cellular constituents
- 9) Cholesterol: cell membrane structure & synthesis of adrenal cortical hormones, vitamin D₃ & bile acids
- 10) Lipids provide bases for dealing with diseases such as obesity, atherosclerosis, lipid-storage diseases, essential fatty acid deficiency, respiratory distress syndrome

Classification of Lipids

- Lipids include:
 - ✓ Open Chain forms
 - Fatty acids, triacylglycerols, sphingolipids, phosphoacylglycerols, glycolipids,
 - Lipid-soluble vitamins
 - Prostaglandins, leukotrienes, & thromboxanes
 - ✓ Cyclic forms
 - Cholesterol, steroid hormones, & bile acids

- Lipids include:
 - ✓ Simple lipids (Fats & Waxes)
 - Compound or conjugated lipids
 - ✓ Derived Lipids
 - Lipid-associating substances
- Lipids include:
 - ✓ Storage Lipids
 - √ Structural Lipids in Membranes
 - Lipids as Signals, Cofactors & Pigments

Fatty alcohols - Glycerol

- It is a trihydroxylic alcohol & has the popular name glycerin
- Synthesized in the body from glucose

Properties:

- 1) Colorless viscous oily liquid with sweet taste
- 2) On heating with sulfuric acid or KHSO4 (dehydration) it gives acrolein that has a bad odor (detection)
- 3) Combines with three molecules of nitric acid to form trinitroglycerin that is used as a vasodilator

Glycerol

- 4) It has a nutritive value by conversion into glucose & enters in structure of phospholipids
- 5) On esterification with fatty acids it gives:
 - Monoglyceride or monoacyl-glycerol: one fatty acid + glycerol
 - B. Diglyceride or diacyl-glycerol: two fatty acids + glycerol
 - C. Triglyceride or triacyl-glycerol: three fatty acids + glycerol

Fatty alcohols - Sphingosine

- It is the alcohol (monohydric) present in sphingolipids
- It is synthesized in the body from serine & palmitic acid
- It is not positive with acrolein test

$$\begin{array}{c} \text{OH} \\ \text{CH}_3\text{-}(\text{CH}_2)_{12}\text{-}\text{CH} \begin{array}{rr} \text{CH}-\text{CH}-\text{CH}-\text{NH}_2 \\ \\ \text{Sphingosine} \end{array}$$

Fatty Acids

- Aliphatic mono-carboxylic acids
- Mostly obtained from hydrolysis of natural fats & oils

- Have the general formula R-(CH₂)_n-COOH, where "n" is mostly an even number of carbon atoms (2-34)
- Mostly have straight chain (a few exceptions have branched & heterocyclic chains)
- They are an excellent examples of amphipathic molecules (bilayers & micelles)
 Out 0
 4

Fatty Acid Structure

- Carboxylic Acids (COOH is C1)
- Hydrocarbon tails (C4 C36)
- Saturated fatty acids N:o
- Unsaturated Fatty acids. In most unsaturated fatty acids, the cis isomer predominates; the trans isomer is rare
- Double bonds specified by (Δⁿ)
- Branches

(a) 18:1(Δ^9) cis-9-Octadecenoic acid

(b) 20:5($\Delta^{5,8,11,14,17}$) Eicosapentaenoic acid (EPA), an omega-3 fatty acid

Fatty Acids - Physical Properties

- Solubility
 - ✓ Longer chains
 - The more hydrophobic, the less soluble
 - ✓ Double bonds increase solubility

- Melting points
 - Depend on chain length & saturation
 - Double bonds lead to low melting temps

Typical Naturally Occurring Saturated Fatty Acids				
Acid	Number of Carbon Atoms	Formula	Melting Point (°C)	
Lauric	12	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{10}\mathrm{CO_{2}H}$	44	
Myristic	14	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{12}\mathrm{CO_{2}H}$	58	
Palmitic	16	$\mathrm{CH_{3}(CH_{2})_{14}CO_{2}H}$	63	
Stearic	18	$\mathrm{CH_{3}(CH_{2})_{16}CO_{2}H}$	71	
Arachidic	20	$\mathrm{CH_{3}(CH_{2})_{18}CO_{2}H}$	77	

Typical Naturally Occurring Unsaturated Fatty Acids

Acid	Number of Carbon Atoms	Degree of Unsaturation*	Formula	Melting Point (°C)
Palmitoleic	16	$16:1-\Delta^{9}$	$CH_3(CH_2)_5CH = CH(CH_2)_7CO_2H$	-0.5
Oleic	18	$18:1-\Delta^{9}$	$CH_3(CH_2)_7CH = CH(CH_2)_7CO_2H$	16
Linoleic	18	$18:2-\Delta^{9,12}$	$CH_3(CH_2)_4CH=CH(CH_2)CH=CH(CH_2)_7CO_2H$	-5
Linolenic	18	$18:3-\Delta^{9,12,15}$	$CH_3(CH_2CH=CH)_3(CH_2)_7CO_2H$	-11
Arachidonic	20	$20:4$ — $\Delta^{5,8,11,14}$	$CH_3(CH_2)_4CH = CH(CH_2)_4(CH_2)_2CO_2H$	-50

Classification - Double Bonds

Saturated Fatty Acids

- A. They contain no double bonds with 2-24 or more carbons
- B. They are solid at room temperature except if they are short chained
- C. They may be even or odd numbered
- D. They have the following molecular formula, $C_nH_{2n+1}COOH$
- E. They are either:
 - Short chain F.A. (1-6 carbons)
 - ii. Medium-chain F.A. (7-10 carbons)
 - iii. Long chain F.A.(more the 10 carbon)

Short & Medium chain F.A.

SHORT CHAIN F.A.

- They are liquid in nature
- Water-soluble
- Volatile at room temperature
- Examples: acetic, butyric, & caproic acids

Acetic F.A. (2C) CH_3 -COOH Butyric F.A. (4C) CH_3 -(CH_2)₂-COOH Caproic F.A. (6C) CH_3 -(CH_2)₄-COOH

MEDIUM-CHAIN F.A.

- They are solids at room temperature
- Water-soluble
- Non-volatile at room temperature
- Examples: caprylic & capric F.A.

Caprylic (8 C) CH_3 -(CH_2)₆-COOH Capric (10 C) CH_3 -(CH_2)₈-COOH

Long-chain & Unsaturated F.A.

LONG CHAIN

- They occur in hydrogenated oils, animal fats, butter & coconut & palm oils
- They are non-volatile & water-insoluble
- Examples: palmitic, stearic, & lignoceric F.A.

Palmitic (16C) CH_3 -(CH_2)₁₄-COOH Stearic (18 C) CH_3 -(CH_2)₁₆-COOH Lignoceric (24C) CH_3 -(CH_2)₂₂-COOH

2. UNSATURATED

- Monounsaturated: they contain one double bonds with the formula (C_nH_{2n-1} COOH)
- Polyunsaturated: they contain more the one double bond (C_nH_{2n-more than 1} COOH)
- Do not pack closely

Monounsaturated fatty acids

- Palmitoleic acid : CH₃-(CH₂)₅CH = CH-(CH₂)₇-COOH
 It is found in all fats
- It is C16:1 Δ 9, (16 Cs & one double bond at C9-10)
- 2) Oleic acid:
- Is the most common fatty acid in natural fats
- It is C₁8:1 Δ ⁹ CH₃-(CH₂)₇- CH=CH (CH₂)₇-COOH
- 3) Nervonic acid: (Unsaturated lignoceric acid)
- It is found in cerebrosides
- It is C₂4:1 Δ^{15} CH₃ (CH₂)₇ CH= CH (CH₂)₁₃- COOH

Polyunsaturated fatty acids

- Essential fatty acids:
 - Can not be synthesized
 - They are required for normal growth & metabolism
 - Source: vegetable oils, cod liver oil & animal fats
 - Deficiency: leads to nutrition deficiency disease
 - Its symptoms include: <u>poor growth & health</u> with susceptibility to infections, <u>dermatitis</u>, <u>decreased capacity to</u> <u>reproduce</u>, <u>impaired transport of lipids</u>, <u>fatty liver</u>, & lowered resistance to stress

Function of Essential Fatty Acids

- They are useful in the treatment of atherosclerosis (transporting blood cholesterol & triglycerides & lowering them)
- Synthesis of certain hormones
- Cellular & subcellular membranes
- Skin integrity, normal growth & reproduction
- Blood clotting (intrinsic factor)
- Important role in health of the retina & vision
- They can be oxidized for energy production

Essential fatty acids

1-Linoleic:

- $C_{18:2\Delta^{9}}^{-12}$ CH₃-(CH₂)₄-CH = CH-CH₂-CH=CH-(CH₂)₇-COOH
- It is the most important since other essential fatty acids can be synthesized from it in the body. ω6

2-Linolenic acid:

- C_{18:3}△9, 12, 15 CH₃-CH₂-CH=CH-CH₂-CH=CH-CH₂-CH=CH-(CH₂)₇-COOH
- In corn, peanut, olive, cottonseed & soybean oils. ω3

3-Arachidonic acid:

- C20:4∆5, 8, 11, 14 CH₃-(CH₂)₄-CH=CH-CH₂-CH=CH-CH₂-CH=CH-CH₂-CH=CH-(CH₂)₃-COOH
- It is an important component of phospholipids in animal & in peanut oil from which prostaglandins are synthesized

Simple Lipids

A. Neutral Fats & oils (Triacylglycerols)

- Esters of glycerol with various
 F.A(commonest in animal fats are palmitic, stearic & oleic acids)
- Uncharged due to absence of ionizable groups in it
- HO-C- R_1 CH2-OH H_2C -O-C- R_1 O H_2C -O-C- R_1 O H_2C -O-C-H O H_2C -O-C-H O H_2C -O-C-H O H_2C -O-C-H Triglycerides (Triacylglycerol)

3. The most abundant lipids in nature

		Common	Systematic name	Formula
	of double	name		
carbons	bonds			
16	0	Palmitate	n-Hexadecanoate	CH3(CH2)14COO-
18	O	Stearate	n-Octadecanoate	CH3(CH2)16COO-
18	1	Oleate	cis-∆9-Octadecenoate	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO-

Simple Lipids

A. Neutral Fats & oils (Triacylglycerols)

- 4. Either;
 - a) Simple: of the same type, e.g., tripalmitin
 - b) Mixed: of different types, e.g., stearodiolein & palmito-oleo-stearin

 Tripalmitin
 (simple triacylglycerol)
- Natural fats are mixtures of mixed triglycerides with a small amount of simple triglycerides

| all amount of
$$CH_2-O-C-(CH_2)_{14}-CH_3$$
 | $CH_3-(CH_2)_7-CH=CH-(CH_2)_7-C-O-C-H$ | $CH_2-O-C-(CH_2)_{16}-CH_3$ | $CH_2-C-C-(CH_2)_{16}-CH_3$ | CH_2-C-

O CH₂-O-C-(CH₂)₁₄-CH₃

Physical properties of fat & oils

- Freshly prepared are colorless, odorless & tasteless (the yellow color is due to carotene pigments)
- Fats have specific gravity less than 1
- Fats are insoluble in water (organic solvents as ether & benzene)
- 4. Oils are liquid at room temperature, whereas, fats are solids (unsaturated vs. saturated)

A. Hydrolysis: steam, acid, enzyme (e.g., lipase of pancreas)

B. Saponification:
Alkaline hydrolysis
produces salts of
fatty acids (soaps).
Soaps cause
emulsification of
oily material

- Halogenation: halogens added to unsaturated F.A (e.g., iodine or iodination)
 - ✓ Used to determine the degree of unsaturation of the fat or oil that determines its biological value

- D. Hydrogenation or hardening of oils:
 - ✓ It is an addition reaction (H at the = of unsaturated F.A)
 - Done under high pressure of hydrogen
 - ✓ It is the base of hardening of oils (margarine manufacturing)
 - Hydrogenation of oils converts some cis-double bonds to transdouble bonds
 - Advantages: more pleasant as cooking fat, easily stored & transported, less liable to rancidity
 - Disadvantages: lack of fat-soluble vitamins (A, D, E & K) & essential fatty acids

```
Oils Hydrogen, high pressure, nickel (liquid) Hard fat (margarine, solid) (with unsaturated (with saturated fatty acids, e.g., oleic) fatty acids, e.g., stearic)
```

E. Oxidation (Rancidty)

- Oxidation of fatty acids by atmospheric oxygen, light, moisture, bacterial or fungal contamination &/or heat
- √ It is a toxic reaction of triglycerides (food poisoning & cancer)
- ✓ Leads to the development of unpleasant odor or taste or abnormal color particularly on aging
- ✓ Saturated fats resist rancidity more than unsaturated fats
- ✓ It is the base for drying oils after exposure to atmospheric oxygen, e.g; paints & varnishes manufacturing
- ✓ Rancidity destroys the fat-soluble vitamins (A, D, K & E)
- Rancidity destroys the polyunsaturated essential F.A.
- ✓ Rancidity causes economical loss because rancid fat is inedible.

Simple Lipids B. Waxes

- Solid simple lipids containing a monohydric alcohol (C16 ~ C30, higher molecular weight than glycerol) esterified to long-chain fatty acids (C14 ~ C36). Examples: palmitoyl alcohol
- 2. Insoluble in water & Negative to acrolein test
- 3. Are not easily hydrolyzed (fats) & are indigestible by lipases
- 4. Are very resistant to rancidity
- 5. Are of no nutritional value
- 6. Coatings that prevent loss of water by leaves of plants

Туре	Structural Formula	Source	Uses	
Beeswax	CH ₃ (CH ₂) ₁₄ — C—O—(CH ₂) ₂₉ CH ₃	Honeycomb	Candles, shoe polish, wax paper	
Carnauba wax	O CH ₃ (CH ₂) ₂₄ — C — O — (CH ₂) ₂₉ CH ₃	Brazilian palm tree	Waxes for furniture, cars, floors, shoes	
Jojoba wax	$CH_3(CH_2)_{18}$ — C — $CH_2)_{19}$ CH_3	Jojoba	Candles, soaps, cosmetics	

Differences between neutral lipids & waxes

Property	Waxes	Neutral lipids
1.Digestibility	Indigestible (not hydrolyzed by lipase)	Digestible (hydrolyzed by lipase)
2-Type of alcohol	Long-chain monohydric alcohol + one fatty acid	Glycerol (trihydric) + 3 F.A
3-Type of F.A	Mainly palmitic or stearic acid	Long & short chain F.A
4-Acrolein test	Negative	Positive
5-Rancidability	Never get rancid	Rancidible
6-Nature at room temperature	Hard solid	Soft solid or liquid
7-Saponification	Nonsaponifiable	Saponifiable
8-Nutritive value	No nutritive value	Nutritive
9-Example:	Bees & carnuba waxes	Butter & vegetable oils

Compound (congugated) Lipids

- They are lipids that contain additional substances, e.g., sulfur, phosphorus, amino group, carbohydrate, or proteins beside fatty acid & alcohol
- Classified into the following types according to the nature of the additional group
 - Phospholipids
 - Glycolipids
 - 3. Lipoproteins
 - 4. Sulfolipids & amino lipids

1. Phospholipids (phosphatides)

- 1. Contain phosphoric acid group in their structure
- Every animal & plant cell contains phospholipids (membranes & subcellular organelles)
- Present in large amounts in liver & brain as well as blood
- 4. Myelin sheath of nerves is rich with phospholipids
- 6. Important in blood clotting & platelet aggregation
- 7. Provide lung alveoli with surfactants to prevent its irreversible collapse
- 8. Important role in signal transduction across membranes
- Snake venom hydrolyses membrane phospholipids
- 10. A source of polyunsaturated F.A

1. Phospholipids (phosphatides)

CH2-CH-CH2

CH2 CH2 CH2 CH2

сн2 сн

CH2

CH₂

CH2 CH2

- Sources: all cells (plants & animals)
- Structure:
- Fatty acids (saturated & unsaturated)
- 2. Nitrogenous base (choline, serine, threonine, or ethanolamine)
- Phosphoric acid
- 4. Fatty alcohols (glycerol, inositol or sphingosine)

- Classification: according to the type of the alcohol
 - Glycerophospholipids
 - Phosphatidic acids
 - Lecithins
 - Cephalins
 - Plasmalogens
 - Inositides
 - Cardiolipin
 - Sphingophospholipids: sphingosine as an alcohol

Glycerophospholipids - Phosphatidic acids

 Exist in two forms according to the position of the phosphate; α & β

Glycerophospholipids - Lecithins

- Contain choline as a nitrogenous base
- Exist in 2 forms α & β -lecithins
- Common cell constituent: brain (α-type), egg yolk (β-type), or liver (both types)
- Structure: choline connected to phosphate
- Common fatty acids in lecithins are stearic, palmitic, oleic, linoleic, linolenic, & arachidonic acids

Glycerophospholipids - Lecithins

- Snake venom: lecithinase hydrolyzes PUFAs converting lecithin into lysolecithin (hemolysis of RBCs)
- Lung surfactant: a complex of dipalmitoyl-lecithin, sphingomyelin & a group of proteins
 - Produced by alveolar cells
 - Improves gas exchange
 - Activates macrophages to kill pathogens
 - Premature babies: surfactant is deficient (RDS)
 - Glucocorticoids increase the synthesis of the surfactant complex

Glycerophospholipids - Cephalins or Kephalins

- Structure: choline is replaced by ethanolamine, serine or threonine amino acids
- Occur in association with lecithins in tissues
- Isolated from the brain (Kephale = head)
- Certain cephalins are constituents of the lipoprotein "thromboplastin" which accelerates the clotting of blood

Glycerophospholipids - Plasmalogens

- Found in the cell membrane phospholipids fraction of brain & muscle, liver, semen
- Structure:
 - ✓ Unsaturated fatty alcohol at C1 connected by ether bond
 - ✓ In mammals: at C3; phosphate + ethanolamine or choline
- At C2 there is an unsaturated long-chain fatty acid, however, it may be a very short-chain fatty acid

Glycerophospholipids - Inositides

- Phosphatidyl inositol
- They have the cyclic sugar alcohol, inositol as the base
- Structure: glycerol, saturated
 F.A, unsaturated F.A,
 phosphoric acid & inositol
- Source: Brain tissues
- Function:
 - Major component of cell membrane
 - Second messenger during signal transduction
 - On hydrolysis by phospholipase C, phosphatidyl-inositol-4,5diphosphate produces diacyl-glycerol (DAG) & inositoltriphosphate (IP3); which liberates calcium

Glycerophospholipids - Cardiolipins

- Diphosphatidyl-glycerol
- Found in the inner membrane of mitochondria
- Initially isolated from heart muscle (cardio)
- Structure: 3 molecules of glycerol, 4 fatty acids & 2 phosphate groups

Sphingophospholipids – Sphingomyelins & Ceramides

- Sphingomyelins: found in large amounts in brain & nerves
- Structure:
 - Sphingosine as the alcohol
 - Two nitrogenous bases: sphingosine itself & choline
 - One long-chain fatty acid
 - Phosphoric acid
- Ceramides: the amino group of sphingosine is attached to a F.A by an amide linkage
 - Found in spleen, liver & RBCs

2. Glycolipids

- Lipids that contain carbohydrate residues
- Sphingosine as the alcohol
 - Contains a very long-chain fatty acid
- They are present in cerebral tissue (cerebrosides)
- Classification: number & nature of carbohydrate present;
 - 1) Cerebrosides: have one galactose or glucose molecule. Myelin sheath of nerves & white matter of the brain

2. Glycolipids

2) Sulfatides: cerebrosides with sulfate on the sugar (sulfated cerebrosides). Brain, liver, muscles & testes

3) Gangliosides: have several sugar & sugaramine residues. Brain, ganglion cells, & RBCs. Receptor for cholera toxin in the human intestine

Ceramide-Glucose-Galactose-N-acetylgalactosamine-Galactose
Sialic acid
Monosialoganglioside

2. Lipoproteins

- Lipids (phospholipid, cholesterol or triacylglycerol) combined with proteins in tissues
- They are either:
 - 1) Structural_: cellular & subcellular membranes. In lung tissues (surfactant). In the eye, rhodopsin is a lipoprotein complex
 - 2) Transport: blood plasma. Composed of a protein (apolipoprotein) & different types of lipids (cholesterol, cholesterol esters, phospholipids & triacylglycerols)
 - As lipid content increases, the density decreases

2. Lipoproteins – types (Density)

A. Chylomicrons:

- a) Largest diameter & least density (2% protein)
- Main lipid fraction is triacylglycerols (absorbed)

B. Very low-density lipoproteins (VLDL):

- a) Diameter is smaller (chylomicrons)
- b) 7-10% protein
- Lipid content is mainly triacylglycerols formed in liver

C. Low-density lipoproteins (LDL):

- a) 10-20% proteins
- b) Contain about 60% of total blood cholesterol & 40% of total blood phospholipids
- As their percentage increases, liability to atherosclerosis increases

2. Lipoproteins - types

- D. High-density lipoproteins (HDL) or α -Lipoproteins:
 - a) Highest density (high protein content). 35-55% proteins
 - b) Lipids formed of cholesterol (40% of total blood content)
 & phospholipids (60% of total blood content)
 - Act as cholesterol scavengers
 - d) As their percentage increases, liability to atherosclerosis decreases
 - e) Higher in females than in males

Steroids: Cholesterol, Bile Salts, and Steroid Hormones

Steroids

H₃C

HO-

H

H

Cholesterol

CHCH₂CH₂CH₂CH(CH₃)₂

- A group of lipids that have fused-ring structure of 3 six
 - membered rings, and 1 five-membered ring
- Usually found in association with fat
- Separated from fats after saponification
- Derivatives of cholesterol
- Biologically important groups of substances:
 - Sterols
 - Adrenal cortical hormones
 - Male and female sex hormones
 - 4. Vitamin D group
 - 5. Bile acids

- Androgens: male 2° sex characteristics
- Estrogens: female 2º sex characteristics & control of menstrual cycle

Cholesterol

- The most important sterol in animal tissues as free alcohol or in an esterified form (with linoleic, oleic, palmitic acids or other F.A)
- > Steroid hormones, bile salts &vitamin D are derivatives
- Tissues contain different amounts of it that serve a structural & metabolic role (adrenal cortex ≈ 10%, whereas, brain is 2%)
- Reduces membrane fluidity
- Source:
 - Synthesized in the body from acetyl-CoA
 - ✓ Does not exist in plants
 - ✓ In the diet (butter, milk, egg yolk, brain, meat & animal fat)

 stabilizing extended chains of FA due to hydrophobic interactions

Cholesterol - Chemical properties

- Intestinal bacteria reduce cholesterol into coprosterol
 & dihydrocholesterol
- It is also oxidized into 7-Dehydrocholesterol
- When the skin is irradiated with ultraviolet light 7dehydrocholesterol is converted to vitamin D3

Bile acids

- They are produced from oxidation of cholesterol in the liver
- Produce cholic and chenodeoxycholic acids that are conjugated with glycine (mainly) to produce glycocholic,
 qlycochenodeoxycholic
- They react with sodium or potassium to produce sodium or potassium bile

CH₃
CH₂
COO Na¹
CH₃
CH₃
CH₂
COO Na¹

glycine, an amino acid

sodium glycocholate, a bile salt

cholic acid, a bile acid

Bile acids - function

- Their function is as follows:
- Emulsification of lipids during digestion
- 2) Activation of pancreatic lipase
- 3) Help digestion & absorption of fat-soluble vitamins
- 4) Solubilizing cholesterol in bile & prevent gall stone formation
- 5) Choleretic action (stimulate their own secretion)

Eicosanoids (icosanoids)

Arachidonic acid

- Signaling molecules made by oxidation of 20-carbon E-PUFA, mainly Arachidonic acid (ω6)
- Source: either ω -3 or ω -6 fatty acids
- Paracrine or autocrine messengers molecules (half-lives 10 secs 5 mins)
- Various eicosanoids are synthesized throughout the body & synthesis can be very tissue specific
- Most catabolism occurs in the lung
- Families of eicosanoids:
 - Prostaglandins
 - ✓ Prostacyclins
 - √ Thromboxanes
 - ✓ Lipoxins
 - ✓ Leukotrienes

Eicosanoids - Functions

- Induction of inflammation
- Mediation of pain signals
- Induction of fever
- Smooth muscle contraction (including uterus)
- Smooth muscle relaxation
- Protection of stomach lining
- Simulation of platelet aggregation
- Inhibition of platelet aggregation
- Sodium and water retention

Anti inflammatory Drugs inhibit Eicosanoid Synthesis

Eicosanoids - Therapeutic uses

- Induction of labor at term
- Therapeutic abortion
- Maintenance of ductus arteriosus

Treatment of peptic ulcer

Erectile dysfunction

