## Genetics Practice Multiple Choice Questions

The first three questions are based on the pedigree to the right:

1. The characteristic indicated by the blackened figures is probably:
a. Dominant.

b. Recessive.
c. Non-dominant.
d. Sex-linked recessive.
2. What are the genotypes of the parents?
a. Both are homozygous dominant.
b. Both are heterozygous dominant.
c. Both are homozygous recessive.
d. The male is homozygous dominant; the female is homozygous recessive.
3. If one parent has type A blood and the other parent has type B blood, what blood type will the offspring denoted by the white square and circle have?
a. Type A.
b. Type B.
c. Type AB.
d. Type O.
4. Mitotic cell division results in two cells that have:
a. n chromosomes and are genetically identical.
b. n chromosomes and are genetically different.
c. $2 n$ chromosomes and are genetically identical.
d. 2 n chromosomes and are genetically different.
5. In tobacco, if the diploid number of chromosomes is 48 , how many chromosomes will be found in a pollen grain?
a. 96 .
b. 48 .
c. 24 .
d. 12.
6. The four cells produced in meiosis will have a:
a. $2 n$ number of chromosomes and will differ genetically from each other.
b. $2 n$ number of chromosomes and will be genetically identical to each other.
c. $n$ number of chromosomes and will be genetically identical to each other.
d. $n$ number of chromosomes and will differ genetically from each other.
7. In the $F_{1}$ generation of a monohybrid cross, the phenotypic ratio would be:
a. $3: 1$
b. $1: 2: 1$
c. $2: 1: 1$
d. 1:1:2
8. Hemophilia is a sex-linked recessive trait in humans. If a father and a son are both hemophiliacs, but the mother is normal, her genotype must be:
a. $X^{h} X^{h}$
b. $X^{H} X^{h}$
c. $X^{H} X^{H}$
d. $X^{h} Y$
9. Mitosis involves separation of only sister chromatids while meiosis involves?
a. Also separation of only sister chromatids.
b. Separation of only homologous chromosomes.
c. Separation of homologous chromosomes as well as sister chromatids.
d. Separation of sister chromatids twice.
10. The cytoplasm of an animal cell is divided by means of:
a. A cleavage furrow.
b. A cell plate.
c. A cell membrane formed within the cytoplasm.
d. Mitosis.
11. The step of mitosis in which chromosomes line up along the equatorial plane of the cell is called:
a. Prophase.
b. Metaphase.
c. Anaphase.
d. Telophase.
12. An example of alleles is:
a. AB and Tt.
b. TT and Tt.
c. T and t.
d. $X$ and $Y$.
13. An example of a genotype is:
a. A tall pea plant.
b. R and r .
c. TtHH.
d. Hemophiliac.
14. Which of the following gives information about the phenotype but not the genotype?
a. $X^{H} Y$.
b. Hemophiliac man.
c. Tall pea plant.
d. Female carrier for colour-blindness.
15. Which blood type would not be possible for children of a type $A B$ mother and a type $A$ father?
a. O .
b. A.
c. B.
d. AB .
16. Long radishes crossed with round radishes result in all oval radishes. This type of inheritance is:
a. Multiple alleles.
b. Complete dominance.
c. Co-dominance.
d. Incomplete dominance.
17. If two white sheep produce a black offspring, the parent's genotypes for colour must be:
a. Heterozygous.
b. Homozygous white.
c. Homozygous black.
d. Not enough information was given.
18. An extra finger in humans is rare but is due to a dominant gene. When one parent is normal and the other parent has an extra finger but is heterozygous for the trait, what is the probability that the first child will be normal?
a. $0 \%$.
b. $25 \%$.
c. $50 \%$.
d. $75 \%$.
19. In drosophila (fruit flies), eye colour is sex-linked and red eye colour is dominant to white eye colour. Which of the following are not possible in a cross between a red-eyed male and a heterozygous female?
a. Red-eyed male.
b. White-eyed male.
c. Carrier female.
d. Homozygous white-eyed female.
20. Which statement concerning a pair of alleles for a gene controlling a single characteristic in humans is true?
a. Both genes come from the father.
b. Both genes come from the mother.
c. One gene comes from the mother and one gene comes from the father.
d. The genes come randomly in pairs from either the mother or father.
21. Which of the following factors could lead to variations in the offspring of asexually reproducing organisms?
a. Crossing over.
b. Fertilization.
c. Mutations.
d. Independent assortment.
22. Genetic traits of seeds are noted as follows:

L = long, $\mathrm{I}=$ short
$\mathrm{W}=$ wrinkled, $\mathrm{w}=$ smooth
$\mathrm{Y}=$ yellow, $\mathrm{y}=$ white
$R=$ ribbed, $r=$ grooved
Which of the following is the genotype for a short, wrinkled, yellow, grooved seed?
a. IIWwyyrr
b. LLWWyYRr
c. LIWwYYRr
d. IIWwYYrr
23. Mendel discovered principles of inheritance because he:
a. Observed simultaneously all of the many characteristics in which the parents differed.
b. Believed that the hereditary characteristics of two individuals became thoroughly blended in the offspring.
c. Ignored all characteristics except a few markedly contrasting ones in which he studied.
d. Studied only the offspring obtained from a single mating.

For the next three questions, use the following key to indicate how many different kinds of gametes (with respect to the traits listed) could be produced by each of the individuals described.

$$
\mathrm{KEY}: \mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=4, \mathrm{~d}=8
$$

24. An individual with the genotype BBFF.
25. An individual with the genotype ddffMm.
26. An individual with the genotype BbffMm.
27. Carriers of the colour-blindness trait include:
a. Men who are heterozygous for the trait.
b. Men who are homozygous for the trait.
c. Women who are heterozygous for the trait.
d. Women who are homozygous for the trait.
28. Normal human eggs have:
a. 22 autosomes and an $X$ chromosome.
b. 22 autosomes and a Y chromosome.
c. 23 autosomes.
d. 46 chromosomes.
29. A strand of DNA with the sequence A A C T T G will have a complimentary strand with the following sequence:
a. CCAGGT
b. AACTTG
c. TTCAAG
d. TTGAAC
30. A pedigree chart shows:
a. The genotypic ratios of the offspring.
b. The types of gametes produced by the parents.
c. The pattern of inheritance of a specific gene.
d. Which genes are co-dominant.
e. The genotypes of any parents.

For the next four questions, use the following key:
KEY: $a=$ All the offspring will exhibit the dominant trait.
$\mathrm{b}=$ All the offspring will exhibit the recessive trait.
c = The recessive trait will show up in about $50 \%$ of the offspring.
$\mathrm{d}=$ The dominant trait will show up in about $75 \%$ of the offspring.
What will be the result if:
31. Bb mates with bb ?
32. BB mates with bb ?
33. bb mates with bb ?
34. Bb mates with Bb ?

## ANSWERS:

| 1. a | 6. d | 11. b | 16. d | 21. c | 26. c | 31. c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. b | 7. a | 12. c | 17. a | 22. d | 27. c | 32. a |
| 3. d | 8. b | 13. c | 18. c | 23. c | 28. a | 33. b |
| 4. C | 9. c | 14. C | 19. d | 24. a | 29. d | 34. d |
| 5. c | 10. a | 15. a | 20. c | 25. b | 30. c |  |

