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What is heart failure?

Heart failure is “a complex clinical syndrome that can result from
any structural or functional cardiac disorder that impairs the
ability of the ventricle to fill with or eject blood”.

Why is this topic important?

It is currently a leading cause of death and disability across the
globe.

Heart failure (HF) is associated to changes in metabolic profile.

20-30% of HF patients are diabetic indicative of a connection.

Optimization of substrate metabolism improves cardiac
function.




Lecture outline

@ Metabolic profile in cardiomyocytes

@ Alteration in metabolic profile during ischemia and
reperfusion

@ Therapeutic targets
@ Biomarkers of heart failure
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Preferential substrates

@ Sufficient oxygen:
@ Fatty acids (50-70%)
@ Glucose (30%)
@ Glycolysis produces 5% of ATP.

@ Increased muscular activity and under ischemic
conditions

@ Glucose and lactate

@ Pathological conditions and starvation:
@ Ketone bodies and amino acids
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ACC, acetyl-CoA carboxylase; CAT, carnitine acyltranslocase; CPT-l, carnitine palmitoyltransferase;
FABPPM, plasma membrane fatty acid binding protein; FAT, fatty acid transporter;
LPL, lipoprotein lipase; MCD, malonyl-CoA decarboxylase.




Glycolytic substrate is derived from exogenous glucose and
glycogen stores.
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Glucose transporters

Major Sites . ..
Tansporter j . Characteristics
of Expression

Brain, erythrocyte,
GLUT-1 endothelial cells, fetal
tissues

Transports glucose and galactose, not fructose
Low Km (~ 1 mM)

Liver, pancreatic beta  Transports glucose, galactose and fructose
GLUT-2 cell, small intestine, Low affinity, high capacity glucose transporter
kidney. High Km (15—-20 mM)

Sefin, (e Ene Transports glucose (high affinity; and galactose,

GLUT-3 N not fructose
Low Km (<1 mM)
GLUT-4 Skeletal and cardiac Insulin-responsive; High affinity for glucose
muscle, adipocytes Medium Km (2.5-5 mM)

Small intestine, sperm,
GLUT-5 brain, kidney,
adipocytes and muscle

Transports fructose, but not glucose or galactose
Medium Km (~ 6 mM)




GLUT-4 translocation
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* A healthy nonischemic
heart is a net consumer

of lactate.
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Production of ketone bodies s - |
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by FFA and ketone bodies

Ketone bodies metabolism
Increases

@ acetyl CoA, which activates
PDK inactivating PDH

@ citrate, which inhibits PFK

Fatty acids metabolism
increases:

@ LCFAs that inhibit HK

@ NADH/NAD+ ratio, which
inhibits PDH

@ acetyl CoA and citrate (see
above)
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Regulation of fatty acidimetaboliSHrsss «

by glucose

@ Glucose oxidation produces citrate, which can be converted to
malonyl-CoA by acetyl-CoA carboxylase (ACC).

@ Malonyl-CoA then can bind to and inhibit CPT1 blocking fatty
acid oxidation.
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Oxidation

Malonyl CoA




@ The Randle cycle describes the
reciprocal relationship between
fatty acid and glucose
metabolism.

@ The increased generation of
acetyl CoA derived from fatty
acid-oxidation decreases
glucose (pyruvate) oxidation.

@ The increased generation of
acetyl CoA derived from glucose
(pyruvate) oxidation inhibits
fatty acid oxidation.
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In the heart, inhibition of glucose utilization by fatty acids is
a form of glucose intolerance that resembles, or may lead to,
insulin resistance.




Metabolic regulation by AMP

Exercise, ischemia, temperature

\
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@ AMPK

@ Activates GLUT-4 translocation into membrane

@ Stimulates glycolysis by activating hexokinase and
phosphofructokinase

@ Activates glycogenolysis
@ |nactivates glycogenesis
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@ AMPK activates fatty acid oxidation by inhibiting formation of
malonyl CoA and activating CPT-1
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@ PPAR isoforms

@ PPAR-a >> PPAR-B >> PPAR-y
Heart, skeletal adipose tissue

. skeletal muscle
muscle, and liver

* PPAR-a increases the
expression of inducers of fatty
acid oxidation (uptake,
esterification, and oxidation).

* PPARs can indirectly regulate
fatty acid oxidation by
decreasing the fatty acid
concentration to which the
heart is exposed.

8-cis retinoic acid
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How does ischemiaialtermetabolic profiless -

@ |schemia results in

@ A decrease of O, and nutrients, which inhibits oxidation of fatty
acid and glucose.

@ Anincrease in AMP/ATP ratio, which activates AMPK, which
activates glucose uptake and glycolysis.
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Metabolism dufing reperfusioniFsss -

@ Fatty acid oxidation resumes, glycolysis continues, but
glucose oxidation is inhibited. This is called
“lipotoxicity”.
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Consequences of metabollsm during repe
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All lead to loss of cardiac
contractile power.
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Biomarkers of HE
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