Case 7: VTE/ MS4
29/Oct/2015

49 yr old lady complains of painful swelling and hotness of her L leg following coming back from visiting her relatives in USA. She had repeated attacks of cough with hemoptysis and shortness of breath. P/E

Duplex Us: DVT common femoral vein with PE

DVT
Case 10 investigation & Diagnosis
Importance of VTE (DVT/PE)

A- PREVENTABLE
B- LIFE THREATENING
C- LONG TERM COMPLICATIONS
D- COMMON
E- COSTLY
VTE is a multifactorial and often silent disease

- Hypertension
- Diabetes
- Smoking
- Age
- Pregnancy
- Cancer
- Antiphospholipid syndrome
- Congenital Thrombophilia
- HIT
- Acute infection
- Hyperlipidaemia
- Others

THROMBOSIS

A multifactorial accident
Venous thrombo-embolism is a multifactorial disease

- Genetic factors
- Environmental factors
- Triggering factors
Risk Factors for VTE

Stasis
- Age > 40
- Immobility
- CHF
- Stroke
- Paralysis
- Spinal Cord injury
- Hyperviscosity
- Polycythemia
- Severe COPD
- Anesthesia
- Obesity
- Varicose Veins

Hypercoagulability
- Cancer
- High estrogen states
- Inflammatory Bowel
- Nephrotic Syndrome
- Sepsis
- Smoking
- Pregnancy
- Thrombophilia

Endothelial Damage
- Surgery
- Prior VTE
- Central lines
- Trauma

Risk Factors for VTE

<table>
<thead>
<tr>
<th>Stasis</th>
<th>Hypercoagulability</th>
<th>Endothelial Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 40</td>
<td>Cancer</td>
<td>Surgery</td>
</tr>
<tr>
<td>Immobility</td>
<td>High estrogen states</td>
<td>Prior VTE</td>
</tr>
<tr>
<td>CHF</td>
<td>Inflammation</td>
<td>Central lines</td>
</tr>
<tr>
<td>Stroke</td>
<td>Inflammatory Bowel</td>
<td>Trauma</td>
</tr>
<tr>
<td>Paralysis</td>
<td>Nephrotic Syndrome</td>
<td></td>
</tr>
<tr>
<td>Spinal Cord Injury</td>
<td>Sepsis</td>
<td></td>
</tr>
<tr>
<td>Hypercoagulability</td>
<td>Thrombophilia</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>Varicose Veins</td>
<td></td>
</tr>
<tr>
<td>Anesthesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most hospitalized patients have at least one risk factor for VTE.

ICOPER: CUMULATIVE MORTALITY AFTER DIAGNOSIS

Mortality (%)

Days From Diagnosis

17.5%

Figure 1. Annual incidence of VTE among residents of Worcester MA 1986, by age and sex. (Reproduced by permission from Anderson FA, et al. Arch Intern Med. 1991;151:933–938.)
The Burden of Venous Thrombo Embolism

1. Post-thrombotic Syndrome (40%)
2. PE (30%)
3. Death (3%)
4. Pulmonary Hypertension (5%)
5. DVT

References:
Post DVT Syndrome/ V. Stasis
VTE - A Public Health matter

- Annually, **1.5 million VTE events** occur in the European Union and **900,000** in the United States\(^1\)\(^2\).

- The subsequent yearly VTE-related complications account for more than **500,000 deaths** in Europe and **300,000 fatalities** in the United States\(^1\)\(^2\).

=> It represents more than the mortality related to AIDS, breast cancer and road traffic accidents combined \(^1\)-\(^4\)

Effective, safe, and cost-effective VTE prophylaxis is available!

- Pharmacologic Prophylaxis reduces DVT and PE by 50-65%.
- Symptomatic and Asymptomatic VTE reduced.
- Bleeding risk due to prophylaxis is rare.
- HIT
 - 2.37% with UFH (occasionally very serious)
 - .06% with LMWH
- Cost effectiveness of VTE prophylaxis has been repeatedly demonstrated.
Thromboprophylaxis reduces the burden of VTE

Risk Assessment for VTE

1. Identifying at-risk patient
2. Counselling at-risk patient
3. Prescribing thromboprophylaxis
Risk Assessment for VTE

- Identifying at-risk patient
- Counselling at-risk patient
- Prescribing thromboprophylaxis
Jordan University Hospital
Venous Thromboembolism Risk Factor Assessment

Patient's Name:______________________ Age: __________ Sex: ___ Wgt:___Kg. Hospital No. ____________

Choose All That Apply

Each Risk Factor Represents 1 Point
- Age 41-60 years
- Minor surgery planned
- History of prior major surgery
- Varicose veins
- History of inflammatory bowel disease
- Swollen legs (current)
- Obesity (BMI >30)
- Acute myocardial infarction (< 1 month)
- Congestive heart failure (< 1 month)
- Sepsis (< 1 month)
- Serious lung disease incl. pneumonia (< 1 month)
- Abnormal pulmonary function (COPD)
- Medical patient currently at bed rest
- Leg plaster cast or brace
- Other risk factors

Each Risk Factor Represents 2 Points
- Age 60-74 years
- Major surgery (> 60 minutes)
- Arthroscopic surgery (> 60 minutes)
- Laparoscopic surgery (> 60 minutes)
- Previous malignancy
- Central venous access
- Morbid obesity (BMI >40)

Each Risk Factor Represents 3 Points
- Age over 75 years
- Major surgery lasting 2-3 hours
- BMI > 50 (venous stasis syndrome)
- History of SVT, DVT/PE
- Family history of DVT/PE
- Present cancer or chemotherapy
- Positive Factor V Leiden
- Positive Prothrombin 20210A
- Elevated serum homocysteine
- Positive Lupus anticoagulant
- Anti-cardiolipin antibodies
- Heparin-induced thrombocytopenia (HIT)
- Other thrombophilia

For Women Only (Each Represents 1 Point)
- Oral contraceptives or hormone replacement therapy
- Pregnancy or postpartum (<1 month)
- History of unexplained stillbirth infant, recurrent spontaneous abortion (≥ 3), premature birth with toxemia or growth - restricted infant

Total Risk Factor Score

VTE Risk and Suggested Prophylaxis

<table>
<thead>
<tr>
<th>Total Risk Factor Score</th>
<th>Incidence of DVT</th>
<th>Risk Level</th>
<th>Prophylaxis Regimen**</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td><10%</td>
<td>Low Risk</td>
<td>No specific measures; early ambulation.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10-20%</td>
<td>Moderate Risk</td>
<td>LWMH, UFH (5000 U BID), ES, or IPC.</td>
<td>ES- Elastic Stockings</td>
</tr>
<tr>
<td>3-4</td>
<td>20-40%</td>
<td>High Risk</td>
<td>LWMH, UFH (5000 U TID), or IPC.</td>
<td>IPC- Intermittent Pneumatic Compression</td>
</tr>
<tr>
<td>5 or more</td>
<td>40-60% - 1-5% mortality</td>
<td>Highest Risk</td>
<td>Pharmacological: LWMH*, UFH, Warfarin*, or in combination with ES or IPC.</td>
<td>UFH- Unfractionated Heparin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LMWH- Low Molecular Weight Heparin</td>
</tr>
</tbody>
</table>

* Use for major orthopedic surgery
** For the appropriate prophylaxis is in a particular patient, check with your consultant concerning best method and dose.

Choice of VTE prophylaxis: ___________________________ Duration: ___ Days: ___

Signature: ___________________________ Date: __________

4 YR Prospective study in inpatients
Total 217 patients: 102 m, 115 f
Total of 49 (22.5%) had inherited VTE
PC DEF 17 (35%)
PS DEF 15 (31%)
ATIII DEF 10 (20%)
Others 7 (14%)
Risks and Incidence of a First Episode of Venous Thrombosis

<table>
<thead>
<tr>
<th>Condition/risk factor(s)</th>
<th>Relative risk</th>
<th>Incidence, percent per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1</td>
<td>0.008</td>
</tr>
<tr>
<td>Hyperhomocysteinemia</td>
<td>2.5</td>
<td>0.02</td>
</tr>
<tr>
<td>(MTHFR 677T mutation)</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>Prothrombin gene mutation</td>
<td>2.8</td>
<td>0.02</td>
</tr>
<tr>
<td>Oral contraceptives</td>
<td>4</td>
<td>0.03</td>
</tr>
<tr>
<td>Factor V Leiden (heterozygous)</td>
<td>7</td>
<td>0.06</td>
</tr>
<tr>
<td>Oral contraceptives plus heterozygous factor V Leiden</td>
<td>35</td>
<td>0.29</td>
</tr>
<tr>
<td>Factor V Leiden (homozygous)</td>
<td>80</td>
<td>0.5 to 1.0</td>
</tr>
</tbody>
</table>

† Adult subjects only. Data from the Leiden Thrombophilia Study.
FACTOR V LEIDEN (APC RESISTANCE)

- **G-to-A substitution at nucleotide 1691 in the gene of F V**
- **Single AA replacement in plasma F Va** (ARG 506 Gln) at 1 of 3 cleavage sites in F Va molecule
- **F V Leiden is inactivated at a rate 10 times slower**
FACTOR V LEIDEN IN JORDAN

- 400 healthy subjects
- 52 (13%) had APC resistance
- 49 (12.25%) were F V Leiden (DNA test)
- 42 (10.5%) were heterozygs for F V Leiden
- 7 (1.75%) were homozygous for F V Leiden

Venous thromboembolism

MAIN OBJECTIVES OF TREATMENT

- Reduction of fatality
- Prevention of recurrence
- Prevention of late sequelae
PULMONARY EMBOLISM and DVT TREATMENT

INITIAL

- Thrombolytic treatment
- Heparin (UFH or LMWH)
- Oral anticoagulant therapy (OAT) and new antithrombotics

LONG-TERM

- OAT and new antithrombotics
- LMWH

HOME

- OAT and new antithrombotics
- LMWH
TREATMENT OF VTE

*HEPARIN (UFH): 80u/kg loading > 18u/kg/hr
PTT 1.5-2.5

OR

*HEPARIN (LMW): 1mg/kgx2 enoxaparin
175u/kgx1 tinzaparin

4hrs post injection blood level 0.6-1u

*WARFARIN: 5mgx1 keep INR 2-3

OVERLAP HEPARIN + WARFARIN
VTE - Duration of therapy
ACCP Guidelines 2001

3-6 months
 - 1st event with time-limited risk factor

?6 months
 - 1st idiopathic

12 months-lifetime
 - 1st event with*
 • Cancer until resolved
 • ACA
 • AT deficiency
 - Recurrent event

All recommendations to be individualised

* Unclear for homozygous fVL, homocysteinemia, protein S or C deficiency
VTE: OTHER TREATMENT MODALITIES

* THROMBOLYTIC THERAPY
 SK 250K loading > 100k/hr 24-72 hr (pe, dvt)
 TPA (pe) 100mg over 2 hrs
* V. Thrombectomy
* IVC Filters
* Pulmonary embolectomy
* Post DVT syndrome
Heparin Preparations Used Clinically

Molecular Weight

- 3000
- 6000
- 9000
- 12000
- 15000
- 18000
- 21000

Factor Xa inhibition (≥5 monosaccharide units)

Thrombin inhibition (≥18 monosaccharide units)

- Penta
- LMW Heparin
- Unfractionated Heparin

Molecular Weight
Warfarin

Identified (1924) as a toxic substance in spoiled sweet clover that caused bleeding in cattle

Pharmacokinetics
- Plasma concentration peaks 2-8 h after an oral dose
- 99% bound to plasma proteins (albumin)
- Half-life in plasma ~25-60 h

Inhibits biosynthesis of vitamin K-dependent zymogens (delayed onset of action)

Prothrombin
Factor VII
Factor IX
Factor X
Protein C
Protein S

procoagulant
anticoagulant
Vitamin K Cycle

Zymogen → γ-Carboxylated Zymogen

Oxygen (O₂) and Carbon Dioxide (CO₂) are required for the conversion of Zymogen to γ-Carboxylated Zymogen.

Warfarin inhibits vitamin K epoxide reductase (mutations cause warfarin resistance).

Warfarin inhibits vitamin K epoxide reductase.
Clearance of Vitamin K-dependent Proteins

Activity (%)

Time after administration of warfarin (hours)
International Normalized Ratio (INR)

\[\text{INR} = \left(\frac{\text{Patient PT}}{\text{Control PT}} \right)^C \]

\(C = \text{International Sensitivity Index} \)

- ISI = 1.2 (sensitive PT reagent)
- ISI = 2.5 (insensitive PT reagent)

Therapeutic range:

\(1 \leq \text{INR} \leq 4 \)
Clearance of Vitamin K-dependent Proteins

![Graph showing the clearance of Vitamin K-dependent Proteins over time after administration of warfarin.](image)

- **Activity (%)**
 - Prothrombin
 - Factor X
 - Factor IX
 - Factor VII
 - Protein C

- **Time after administration of warfarin (hours)**
 - 0
 - 20
 - 40
 - 60
 - 80

- **INR**
 - Antithrombotic effect
 - Prothrombotic effect
Conditions that Alter the Response to Warfarin

Compliance

Drugs
- Affect hepatic metabolism of warfarin
- Affect binding to plasma proteins

Diet
- Availability of vitamin K

Other conditions
- Nephrotic syndrome (low plasma albumin)
- Pregnancy (high levels of coagulation factors)
- Liver disease (low levels of coagulation factors)
Complications of Warfarin Therapy

Bleeding
Risk increases with INR > 4
Treated with vitamin K
or fresh-frozen plasma (immediate response)

Birth defects and abortion
Skeletal and CNS abnormalities (hypoplastic nose, flat face, altered calcification)
Contraindicated during pregnancy
(heparin may be used)

Skin necrosis
Microvascular thrombosis
In patients with heterozygous protein C or S deficiency if a high initial dose is used or heparin overlap is inadequate
Case 8

50 yr old man complains for several weeks of hotness in his face, itching and severe acute pain in his big toe. Hb 19, WBC 17k, Platelets 500K, Serum Uric acid 12mg/dl, Po2 Saturation 95%, serum erythropoeitin 10 mU/ml. JakII Mutation +.
Diagnosis: polycythemia rubra vera with acute gouty arthritis.
Myeloid Malignancies

1- CML
2- AML
3- CMPN or disorders:
 PRV
 ET
 MF
Myeloproliferative Neoplasms

Common features

- Specific clinicopathologic criteria for diagnosis and distinct diseases, have common features
- Increased number of one or more myeloid cells
- Splenomegaly
- Hypercatabolism: wt loss, gout
- Clonal marrow hyperplasia without dysplasia
- Predisposition to evolve

- Generalized pruritus (after bathing)
- Unusual thrombosis (e.g., Budd-Chiari syndrome)
Role of mutations in chronic phase of MPN

Gain of function
- JAK2
- MPL
- CBL

Loss of function
- LNK
- NF1

STAT3/5 activation

Immune response
- Inflammation
- Angiogenesis
- Proliferation
- Apoptosis
Janus Kinase 2 (JAK2-V617F)

- Gain-of-function mutation is present in
 - \(~95\% \) of cases of PV
 - 23-57\% of cases of ET
 - 43-57\% of cases of MF
Risk classification of PV and ET

High risk*

- Age > 60 years
- Previous thrombosis

Low risk

- Age ≤ 60 years
- No previous thrombosis

* For practical purposes, platelets > 1,500 x 10^9/L also considered high risk

Barbui et al., JCO 2011 (E-pub ahead of print)
Diagnostic Criteria (Conventional): PRV

A1 Raised red cell mass
A2 Normal O2 sats and EPO
A3 Palpable spleen
A4 No BCR-ABL fusion
B1 Thrombocytosis >400 x 10⁹/L
B2 Neutrophilia >10 x 10⁹/L
B3 Radiological splenomegaly
B4 Endogenous erythroid colonies

A1 + A2 + either another A or two B establishes PV
JAK2/ serum erythropoietin
Polycythemia Vera Diagnostic Criteria

Table 4. WHO diagnostic criteria for P-vera

<table>
<thead>
<tr>
<th>Major Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elevated RBC mass > 25% above mean normal predicted value or hemoglobin > 18.5 gm/dL (male) or 16.5 gm/dL (female)</td>
</tr>
<tr>
<td>2. Presence of JAK2 V617F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BM trilineage myeloproliferation</td>
</tr>
<tr>
<td>2. Low serum erythropoietin levels</td>
</tr>
<tr>
<td>3. Endogenous erythroid colony formation</td>
</tr>
</tbody>
</table>

Diagnosis requires both major criteria or one major and two minor criteria.
FIGURE 1. Diagnostic algorithm for polycythemia vera (PV).

*Clinical clues for PV include splenomegaly, thrombosis, aquagenic pruritus, and erythromelalgia. Laboratory clues for PV include thrombocytosis, leukocytosis, and increased leukocyte alkaline phosphatase score. Janus kinase 2 (JAK2) screening is to detect the V617F mutation that occurs in most patients with PV. BM = bone marrow; CBC = complete blood cell count; MPD = myeloproliferative disorders.

†Alternatively, one can consider mutation screening for JAK2^{V617F} to help decide necessity of BM examination.
First-line therapy of PV

When:
- High-risk (age >60 years, thrombosis)
- Poor tolerance to or high need of phlebotomy
- Symptomatic or progressive splenomegaly
- Platelet >1.500 x 10⁹/L
- Progressive leukocytosis
- Disease-related symptoms

How:
- Phlebotomy (Hct < 45%)
- Low-dose aspirin
- Hydroxyurea or IFN-α
 - Caveat on HU for young < 40 years
- Busulphan in elderly
- Manage generic cardiovascular risk factor

First-line therapy of ET

When:
- High-risk patients (age > 60 years, prior thrombosis)

How:
- Hydroxyurea at any age
- Manage generic cardiovascular risk factors
- Aspirin if microvascular disturbances

Essential Thrombocythemia: Diagnostic Criteria

- Platelet count $\geq 450,000$

- JAK2 V617F$^+$ OR no evidence of reactive thrombocytosis

- Not meeting WHO criteria for other MPNs (e.g. PV, CML)

- Megakaryocyte proliferation with large and mature morphology; no or little granulocyte or erythroid proliferation

- ALL FOUR CRITERIA ARE “REQUIRED”
Essential Thrombocythemia

- Bone marrow: Hypercellularity with marked megakaryocytic hyperplasia
Ruxolitinib in the treatment of MPN

Selective JAK I & II inhibitor
Second line after hydroxyurea
Offers improvement of systemic symptoms, trx requirements.
No survival benefit as yet