Pox & Human Papilloma Viruses

This lecture will discuss two viruses, or rather a family of viruses (*Poxviridae*) and a single virus (*HPV*).

Poxviridae

Properties

- **dsDNA** viruses which replicates in the cytoplasm\(^1\) (*Unique feature*)
- **Large\(^2\)** viruses (100 x 200 x 300)nm
- **Brick-shaped** envelope.
- **Complex** capsids (*Not icosahedral or helical*) = Not normal capsids
- Envelope (*Double membrane*) is **neither** acquired from Golgi Apparatus or cell membrane but is **virus-made**.
 - Made by the virus during the replication in the cytoplasm.
 - Upon exit, it acquires another membrane from Golgi which **surrounds the whole virus**.
 - Upon exit, the Golgi membrane is lost so we can say that it exits by **exocytosis**.
- Infects humans, mammals, birds & insects.
- Has 3 or 4\(^3\) genera\(^4\).

Epidemiology

- **Dropped** from national (*Regular*) vaccine programs in some countries in 1972.
- Completely eradicated in 1977.
- Last reported case was in **Somalia**.

Viruses

(*All of these are seen in animals.*)

- Smallpox
- Vaccinia (*Used in vaccines*)
- Molluscum contagiosum (*MCV, associated with cutaneous lesions but no systemic involvement*)
- Orf
- Cowpox
- Pseudocowpox
- Milker's Nodules\(^5\)

\(^1\) Remember that most DNA viruses replicate in the nucleus.

\(^2\) Used to be the biggest virus before Mimivirus was discovered.

\(^3\) Wikipedia says there are 4 genera which can infect humans.

\(^4\) You don't have to know which virus belongs to which genus but you must know the viruses and their properties.

\(^5\) This is actually a disease caused by the virus but the professor mentioned it here as a virus.
Variola
(Smallpox)

Properties

- Has *(Used to have)* two types
 - Variola Major
 - Death rates range between 3% to 35%
 - Variola Minor *(Alastrim)*
 - Death rates less than 1%.
- Lesions are characterized by **uniform** papulvesicles which pustulate then heal slowly.
- Incubation period is around **two weeks** but can be shorter.
- Prolonged survival in extracellular environment.
- Zoonotic *(Transmitted between species; monkeys and cows)* and causes mild disease in humans.8
- **Highly contagious** in humans through:
 - Respiratory Route
 - Direct contact with a lesion
 - Fomites infected with the virus
- Why do we still study about this virus? *(Some previously mentioned points will be repeated)*
 - It can survive well in extracellular environment.
 - Very stable in its freeze-dried9 form for long periods *(Structure, function, and infectivity don't get affected).*
 - Pox in this form can be found in two institutions in: Moscow, Russia and the United States of America *(Center for Disease Control; CDC).*
 - **High infectivity**10 in humans.
 - **Limited** supply of vaccines.
 - **No** specific anti-viral therapy.
 - Can be used in warfare and bioterrorism11.

Pathogenesis

- Once the virus is in the cytoplasm, it **shuts off synthesis of host cell proteins** in favor of its own.
- It also changes the cell's **permeability**, eventually leading to death.
- Produces **eosinophilic cytoplasmic inclusion bodies** known as **Guarnieri bodies**12.

6 More severe and most common form of smallpox, with a more extensive rash and higher fever.
7 Less common and much less severe.
8 These viruses are still monitored because they can mutate and become more virulent.
9 To freeze-dry something is to preserve it by rapidly freezing it and then subjecting it to a high vacuum that removes ice by sublimation.
10 The frequency with which an infection is transmitted when contact between a virus and host occurs *(Catching the virus)*
11 Stable in aerosol form and very small dose is needed for infection thus making it a Class A Bioterrorism agent.
12 Appear as pink blobs in cytoplasm of affected epithelial cells stained with eosin. Characteristic of Poxviruses.
Clinical Manifestations

- Sudden onset of fever
- Chills
- Myalgia (*Pain in muscles*)
- Rash
 - Develops **3 to 4 days** after the last 3 symptoms
 - Starts as a **maculopapular** rash which turn into **vesicles, pustulate** then heal slowly **without** leaving any scars.
- Hemorrhagic rash (*Sledge hammer*)
 - Happens in certain cases when **bleeding into lesions** occurs.
- Bacterial superinfections
 - Happen as a result of lesions breaking skin which is the body's first defense barrier.
 - Can be **fatal** if it leads to development of **sepsis**.
- Refer to slide 6 for notes about the pictures
 - Smallpox can be widespread all over the body.
 - All lesions are in the same stage of development (**Uniform**) in contrast to chickenpox\(^\text{13}\).

Diagnosis

- **Scraping** of vesicle for
 - Virus culture
 - Polymerase Chain Reaction\(^\text{14}\) (**PCR**)
 - Electron microscopy

Prevention

Edward Jenner was a scientist who noticed that most milkmaids\(^\text{15}\) developed cowpox (*Usually presented as a solitary lesion on their hands*) and were immune to smallpox. This observation inspired him to come up with the idea of vaccines.

- Vaccinia virus is used as a **vector** for the vaccine.
- The vaccine includes a **recombinant of smallpox and cowpox** (*Or horse-pox, as it is sometimes called*).
- Vaccine for smallpox follows the **usual course of normal smallpox** and causes a **localized lesion** at the site of injection.
- Vaccination does **not** provide life-long immunity but wanes after around **3 years**.
- Despite the relatively short duration of its effect, it was successful in achieving eradication by vaccination within short periods.

\(^\text{13}\) Another difference worth knowing is that Smallpox starts from the periphery while chickenpox starts from the trunk.
\(^\text{14}\) Biochemical test to amplify a single or a few copies of a piece of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence.
\(^\text{15}\) Women who milk cows.
Molluscum Contagiosum

Properties

- Spreads by:
 - Direct contact
 - Towels
 - Sex
- Incubation period is longer than smallpox, ranging from 2 to 8 weeks.
- Characterized by painless nodules (Pearl-like lesions with cheesy material center)
- No systemic involvement, only cutaneous lesions.

Diagnosis

Clinical picture, which can be confirmed by the presence of eosinophilic inclusions in cytoplasm of epithelial cells (Molluscum bodies).

Treatment

- No specific treatment.
- Lesions usually disappear in 2 to 12 months.
- Can be removed surgically or by curettage (Picture in slides) for cosmetic reasons.

Please refer to slide 9 for some notes regarding the pictures in it

- The top picture shows MC (Refer to its characteristics above).
- The two bottom pictures show Orf and Cowpox which infect sheep & goats and cows respectively.
 - When they infect humans, they are usually solitary or single lesions.
 - Begin as a vesicle which enlarges inside and then starts to become necrotic in the middle.
 - Healing of the lesions in Orf takes about a month while the one in Milker's Nodules takes a little bit longer.

The professor will not ask about incubation periods but you must know the contagiousness periods for:

- Rubella (German Measles)
- Rubeola (Measles)
- Chickenpox

16 Curettage is the use of a curette (French, meaning scoop) to remove tissue by scraping or scooping.
Human Papilloma Virus

Properties

- Does not encode its own polymerases but depends on cellular machinery for its replication (Unique Property).
- Small naked dsDNA virus
- Genome encodes 8 early genes (E1-E8) and 2 structural proteins (L1 & L2).
- Icosahedral capsid which is composed of two proteins (L1 & L2)
- More than 100 serotypes (Most of which are not associated with disease).
- Cannot be grown in cell culture, which limits our knowledge about its replication cycle and pathogenesis.
- Associated with malignancy (Proteins E6 & E7) such as cellular dysplasia or precancerous lesions
 - Just like herpesviridae and Adenovirus
 - Adenovirus was not associated with malignancy in humans, only in animals so theoretically speaking, it could be associated with malignancy in humans but the relation hasn't been established yet.
 - Herpesviridae, Adenovirus and HPV all have one thing in common which is capability of producing a latent infection.
 - Herpes' latency can last for years if not decades.
 - Adenovirus's shedding and production can last for a year and a half with no symptoms (Temporary latency).
 - HPV is capable of latency but the latent infection is usually cleared within 18 to 24 months (Temporary latency).
 - Most men and 97% of women clear the virus within a year and a half.
Replication

Not much is known about it but we do know that:

- Infects **basal layers of squamous epithelium** or has affinity for **junctions** between squamous and columnar epithelium such as seen in the **anus and cervix**.
- The virus is **internalized**\(^{17}\) **uncoated** and then enters the **nucleus** where its replication takes place like a typical DNA virus.
- Host RNA polymerase transcribes E genes followed by early protein synthesis.
- **E6 and E7** play a role in cellular **transformation** leading to **excessive cell division**.
 - E6 bind to **p53** and E7 to **p105RB** proteins **disrupting cell cycle regulation** because both previously-mentioned genes\(^{18}\) are **tumor-suppressor genes** with active roles in regulation.
 - p53 repairs DNA damage by **stopping the cell cycle at the G\(_1\)** phase to give the cell enough time to repair it or by **inducing apoptosis** if the damage is too great.
 - So binding to p53 causes the cell to divide **continuously without control**.
 - Retinoblastoma gene plays a role in regulating the cell cycle by **preventing the cell from entering the division state** until it's ready in order to minimize faults.
 - This protein has a 'pocket' and E7 was found to **attach** to that pocket and prevent its activity.
- The dividing cell carries viral genome as **extracellular DNA**.
 - Most of the time, it's in the form of **episomes**\(^{19}\) (Like *Herpesviridae*).
 - Occasionally, it was **integrated** within the host's genome.
- Viral DNA synthesis occur at two levels directed by cellular DNA polymerase
 - **Latent Infection**
 - Virus lies latent in the **lower epidermis**
 - **Vegetative DNA Replication**
 - **Active** replication of the virus occurs in **differentiated epithelial cells**.
- Epithelial cells differentiate into keratinocytes where capsid proteins are synthesized and DNA replicated.
- DNA replication and synthesis **peak** at a certain time and then the virus **assembles in the nucleus** and virus is released by cell **lysis** since it's a naked virus.

Epidemiology & Prevalence

- **Most common** sexually transmitted disease (STD).
 - An estimated 9.2 million sexually active adults (15 - 24 years) are infected with genital HPV.
 - An estimated 5% to 30% of infected people might be infected with multiple serotypes.

\(^{17}\) The entering of cells by viruses following virus attachment.
\(^{18}\) Genes encoding the proteins
\(^{19}\) Closed circular DNA molecules that are replicated in the nucleus.
Pathogenesis

Transmission through:

- **Direct skin-to-skin contact** *(Primary route)*, more specifically **sexual contact** with infected:
 - Penis
 - Scrotum
 - Vagina
 - Vulva
 - Anus
 - Anal involvement is seen mostly in *homosexuals*, especially ones with HIV.
- Contact with infected lesion can also lead to disease development.
- **Perinatal** *(During the passage of the baby through the birth canal)*
 - Baby usually develops *oral or pharyngeal* papilloma.

Infectivity is **60%** but most infections are **asymptomatic**.

Risk Factors

- Young age *(Less than 25 years)*
- Multiple sex partners
- Early age at first intercourse *(Best time to give vaccine is before becoming sexually active)*.
- Male or female partner has *(or has had)* multiple sex partners.

Average incubation period is **long**, varying from **3 weeks to 1 year** or more so a patient can get infected but not develop symptoms for years.

Clinical Manifestations *(In a wide range of vertebrae including humans)*

- Papilloma
- Cutaneous Warts
 - Usually occur in *children and young adults*.
 - Cause the body to develop **specific protective immunity** against the serotype it has been infected with.
 - Vaccines might not be effective with people already infected with one or more of the serotypes in the vaccine since they already developed immunity.
 - Serotypes 6 and 11 were associated with warts only.
- Serotypes 16, 18, 31, 45 and 56 are associated with **malignancy and wart lesions**.
 - Serotypes 16 and 18 are **most commonly** associated with malignancy.

20 Benign epithelial tumor growing exophytically *(outwardly projecting)* in nipple-like and often finger-like fronds.
Please refer to slide 18 for some notes regarding the pictures in it

- Genital warts are unsightly cauliflower-like growths, usually caused by serotypes 6 and 11.
- Serotypes 16 and 18 are associated with malignant genital warts (Can lead to cervical or penile cancer, especially 16 for penile carcinoma)
 - It was noted that uncircumcised males are more prone to malignancy so maybe cell transformations occurs in that part.
- Symptoms (May recur from time to time)
 - Single or multiple fleshy growths around the penis, scrotum, groin, vulva, vagina, anus, and/or urethra in males.
 - Itching
 - Bleeding
 - Burning
 - Pain
- Locations of lesions (As seen in pictures)
 - Penis
 - Thigh
 - Anus and perianal area
 - Vulva

Diagnosis

- Pap smear for females (Looking for precancerous transformation or cervical dysplasia)
- PCR (Rarely used)
- Immunofluorescence Tests (Rarely used)
- No screening test for males.

Treatment

- Surgical excision of lesion
 - There's a great chance for recurrence because removing the lesion doesn't remove the virus from the body.
- Medical Treatment
- Cryotherapy (Lesion can be removed with liquid nitrogen)
- Electrosurgery (Using an electric current to remove warts)
- Radical surgery and radiotherapy are a must in case of carcinoma.

Remember that anti-viral drugs do not work on latent infections because they need actively-replicating viruses.
Prevention

- Vaccine
 - Relatively new vaccine\(^{21}\) so the exact coverage period of the vaccine is still being studied but thought to be 5 to 7 years, maybe longer.
 - First vaccine to prevent cervical cancer.
 - There are two types:
 - **Gardasil**
 - Includes serotypes 6, 11, 16, and 18.
 - **Recombinant** vaccine which has an inactive capsid protein (L1)
 - We have a virus-like particle (VLP) and within is the inactivated L1.
 - There is no chance of developing symptoms because this is not a live attenuated vaccine and does not have the whole components of the virus.
 - Approved for use in **females and males** as well from 9 to 21 or 26 (Most importantly before sexual activity)
 - Given on 3 doses in the period of 6 months (0, 1 or 2 months then 6 months\(^{22}\))
 - **Cervarix**
 - Includes only serotypes 16 and 18 (The most oncogenic serotypes).

Please note that the footnotes are extra information for explanation and not included in the exam.

Please accompany this sheet with the slides, the professor mentioned at least 90% of all information in the slides but it’s better to skim through them at least after the sheet.

21 Approved in 2009 in the USA and 2007 in Australia and some other European countries

22 Months at which doses should be given

College in a nutshell

Goes to class: Teacher repeats the same damn thing again. Nothing important happens.

Misses one class: The cure to cancer is created. Waldo is found, AIs took over, the second coming of Jesus Christ took place and the Fire Nation attacked.