Organic Reactions Summary

<u>Substitution</u>

ightarrow An atom/group in the chain is replaced by another

Family	Reacts with	Catalyst	Products
Alkanes	Halogens	UV Light	Haloalkane +
			hydrogen halide
Aromatics	Halogens	FeBr3 or AICI3	Halobenzene +
			hydrogen halide
Aromatics	Alkyl Halides	AICI3	Alkylbenzene +
			hydrogen halide
Aromatics	Nitric Acid	Sulphuric Acid	Nitrobenzene +
			water
Alcohols	Hydrogen halide	ZnCl2 (Lucas	Alkyl Halide +
		Reagent)	Water
Ethers	2 binary acids	Heat	2 alkyl halides +
			water
Ammonia	Alkyl Halide	NA	Amine +
			Hydrogenhalide

<u>Addition</u>

 \rightarrow Adding groups (or atoms) to a chain by breaking a C=C bond

Family	Reacts with	Catalyst	Products
Alkenes	Hydrogen	Platinum (Pt)	Alkane
Alkenes	Halogens	CCI4	Haloalkane (2
			halogen atoms)
Alkenes	Hydrogen Halide	N/A	Haloalkene (1
			halogen atom)
Alkenes	Water	H2SO4 + 100 C	Alcohol
Alkynes: Same as alkenes, but require 2 moles of the 2 nd column to fully			
saturate the triple bond.			

<u>Elimination</u>

\rightarrow Removal of 2 atoms/groups to form a double bond

Family	Reacts With	Catalyst	Products
Alcohols		H2SO4, 100 C	Alkene + water
Alkyl halides	Hydroxide ion	n/a	Alkene + water +
			halide ion

<u>Oxidation</u>

 \rightarrow loss of electrons by the carbon atom (ox # goes down)

Reactions:

- Alkenes are oxidized by either KMnO4 or K2Cr2O7 to produce an alkane with two alcohol groups ("diols")
- Each C in the C=C bond gets an –OH group
- Alcohols are oxidized by the same as above to produce:
 - Primary alcohol → aldehyde → carboxylic acid
 - Secondary alcohol \rightarrow ketone
 - Tertiary alcohol \rightarrow won't react
- Aldehydes are oxidized by the same as above to produce a carboxylic acid.
- Ketones can't be oxidized. These properties can be a qualitative test to distinguish between an aldehyde and a ketone

Oxidizing Agents:

- KMnO4 turns from purple to brown in an aldehyde, and stays purple in a ketone.
- K2Cr2O7 turns from orange to green in aldehyde, stays orange in ketone
- Fehling's Solution: Copper (II) solution. Blue to orangish brown precipitate in aldehyde, stays blue in ketone
- Tollen's Reagent (silver ions in ammonia) clear & colourless **black** precipitate with silver mirrored coating in aldehyde, stays colourless in ketone

Condensation Reactions

• Linking 2 molecules together by linking an H and an OH to produce water

Family	Reacts With	Catalyst	Products
Alcohols	Each other	H2SO4 + heat	Ether + water
Alcohols	Carboxylic Acid	H2SO4 + heat	Ester + water
Amines	Carboxylic acid	H2SO4 + heat	Amide + water

Hydrolysis Reactions

 \rightarrow splitting apart of a molecule by adding water

Family	Reacts With	Catalyst	Products
Esters –	Water	H2SO4 + heat	Alcohol +
Reversible			carboxylic acid
Esters –	Water + Base		Alcohol +
Irreversible			carboxylate ion
			+ metal ion
Amides	Water	H2SO4 + heat	Amine +
			Carboxylic Acid