The University of Jordan

PHYSICS DEPARTMENT

D		()
Physics	105	(2nd	EXAM

SECOND SEMESTER (Dec. 5th, 2010)

eful Information: S	ome Results Are Round	ed CONSIDER (AC	CELERATION DUE	TO GRAVITY) $g = 9.8 \text{ m/s}^2$
امي) the windshield	10 ms ⁻¹ collides w head firs (الزجاج الإما average force (in N	t and comes to	rest in 0.002 s. if	لم يربط حزا) passenger strikes the mass of the passenger
(a) 31250	(b) 25000	(c) 20000	(d) 50000	(e) 88500
the composite of	ving 5.0 m/s collides object is moving at 3 Determine the speed	0 m/s in a directi	on opposite to the i	bject. After the collision nitial direction of motion of th sion in (m/s).
(a) 27.0	(b) 19.7	(c) 3.0	(d) 28.3	(e) 1.5
. A 2.5-kg object fa How much wo it falls 80 cm	ork is done (in J) by	nward in a visco y the force the v	us medium at a co	onstant speed of 2.5 m/s. erts on the object as
(a) +19.60	(b) -19.60	(c) +1.96	(d) -1.96	(e) +39.2
(a) 15 ((b) 7.5 (c) 30	(d) 22.5	(e) 0.0	7.5
				$0 \xrightarrow{4} \xrightarrow{8} t (s$
5. A steel band exerts torque in (N	s a force of 80.0 N or	n a tooth at point lout the point A?	B as in the figure. V	0 4 8
5. A steel band exerts torque in (N (a) 0.012 (d) 0.0	(b) 0.480 (e) 0.831	n a tooth at point I out the point A?	B as in the figure. V	0 4 8
torque in (N (a) 0.012 (d) 0.0 6. A 1.4 kg block is	(b) 0.480 (e) 0.831	(c) 0.642 out the point A? (c) 1.642 onless 220 inclin N. If the kinetic 6	e from point A to	0 4 8 What is the

7. In the figure, the weight of the rod W = 1000 N, and its length

l = 10 m. The rod is at equilibrium making an angle 45° with the x-axis.

The tension T in the rope connecting the end of the rod to the wall is:

- (a) 100 N
- (b) 500 N
- (c) 707 N
- (d) 1000 N
- (e) 1414 N

8. In the above question, what is the horizontal component of the reaction force that acts on the rod by the hinge?

- (a) 100 N
- (b) 500 N
- (c) 707 N
- (d) 1000 N
- (e) 250 N

9. When a ball rises vertically to a height h and returns to its original point of projection, the work done on it by the gravitational force is

- (a) + mgh.
- (b) mgh
- (c) 0.
- (d) -2mgh.

10. An object is in static equilibrium if:

- (a) It moves with a constant speed.
- (b) The net external force acting on it is zero.
- (c) The net torques acting on it about any axis is zero.
- (d) The net external force is zero, and the net external torque on it about any axis is zero.
- (e) The net internal and external forces acting on it is zero

 $\sqrt{1}$. An object of mass m1 moving in the positive x – direction undergoes a head-on elastic collision with a mass m2 which is at rest. Which of the following statements is WRONG?

- a) After the collision the two objects may move in opposite directions.
- b) After the collision the two objects may move in the same direction.
- c) Kinetic energy is conserved in this collision
- d) After the collision both objects can be at rest
- e) During the collision they act on each other with equal and opposite forces.

12. A small object of mass m slides along the frictionless track in the figure, starting from rest at point A. What is its speed (in m/s) at point B?

- (a) 6.3 (b) 7.7 (c) 0.0
- (d) 9.9 (e) 4.4

5 m

 $c\lambda$

List your final answers in this table. Only the answer in this table will be graded..

Question	Q1:	Q2:	Q3:	Q4:	Q5 :	Q6:	Q 7:	Q8:	Q9:	Q10:	Q11:	Q12:
Final								2	В			
Answer							1					

VF = 6.76 ≈ 6.3

