Physiology questions review

- 1- The consumption of O_2 by the kidney:
- a- decrease as blood flow increases
- b- regulated by erythropoiten
- c- remains constant as blood flow increase
- d- direct reflects the level of Na transport
- e- greatest in the medulla

(most of the oxygen consumed for the Na/K ATPase pump and that what is responsible for Na transport)

- 2- In the presence of ADH filtrate will be isotonic to plasma in
 - a- Descending loop of Henley
 - b- Ascending loop of Henley
 - c- Cortical collecting tubules
 - d- Medullary collecting tubules
 - e- Renal pelvic

(as that cortical interstetium is 300)

3- pt. takes excessive amount of HCO3 to treat his heart burn, which of the following blood gases value will be observed in the pt.

	P(CO2)	PH
A	25	7.7
В	35	7.6
С	45	7.5
D	55	7.4
Е	65	7.3

(More HCO3 intake will cause metabolic alkalosis so the plasma PH will be slightly elevated and to compensate for that CO2 will be increased in the same way)

- 4- Na is reabsorbed from the baso-lateral surface of EPT surface by:
 - a- Na-H+ transporter
 - b- Na-Glu transporter
 - c- Na-K+
 - d- Fascilitated diffusion
 - e- Solvent drag
- 5- repiratory acidosis that result in increase [H+] in arterial that change the PH from 7.4 to 7.3 will cause :
 - a- inhibite perephral receptors
 - b- decrease amount of ammonia excreated in urin
 - c- inhibite central receptors
 - d- increase PH of urine
 - e- increase [HCO3] in arterial blood

(respiratory acidosis means increase in the CO2 and that by default will cause increase in HCO3) $\,$

- 6- which of the following will be more concentrated at the end of the proximal tubule than the beginning of the proximal tubule?
 - a- HCO3
 - b- GLU
 - c- Na
 - d- A.A

e- Creatinine

(all are reabsorbed except for cereatenin)

7- metabolic acidosis caused by diabetic ketoacidosis, which of these will be less than normal?

a- plasma HCO3

- b- anion gap
- c- alveolar ventilation
- d- plasma [H+]
- e- urine flow

(in metabolic acidosis, high H+ concentration in the blood will be attacked by HCO3, so it's concentration will be decreased)

- 8- which of the following is most likely to increase GFR:
 - a- constriction of efferent arteriole to half of its diameter
 - b- increase Boman capsule hydrostatic pressure
 - c- administration of NSAIDs

d- dilatation of afferent arteriole

- 9- destruction of supraoptic nuclii in the brain will produce wich of the following changes in the urinary volume (V) and concentration (C)
 - a- increase V, low C
 - b- increase V, high C
 - c- normal
 - d- decrease V low C
 - e- decrease V high C

(damage to supraoptic \rightarrow no ADH \rightarrow loss of it's function which is production of concentrated urine)

- 10-effective renal plasma flow which equale the clearance of PAH is less than the true renal plasma flow because:
 - a- fraction of PAH filtered is less than filteration fraction
 - b- plasma entering the renal vein contains small amount of PAH
 - c- cortical and medullary tubules able to reabsorbed PAH
 - d- calculated clearance of PAH depends on urine flow rate
 - e- measured value of plasma [PAH] is less than PAH

(as that 10% of the blood flow to kidney skip the renal system of filtration)

11-use data below to calculate amount of substance C **secreted** by the kidney:

C of inulin = 130 ml/min

Plasma[X] = 0.1mg/ml

Urin[X] = 10mg/ml

Urin flow rate= 1.5 ml/min

a- 1mg/min

b- 2 mg/min

- c- 3 mg/min
- d- 4 mg/min
- e- 5 mg/min

(Clearance = U*V/P = 10*1.5/0.1 = 150 ml/min excreted by the kidney To calculate secreted amount 150-130 = 20 ml/min secreted 20 ml of plasma concentration will carry 2 mg/min as that plasma concentration = 0.1 mg)

12-Assuming that

plasma[cereatenin] = 0.8 mg/dl plasma[Glu] = 120 mg/dl urinary [cereatenin] = 96 mg/min urinary flow rate = 1 ml/min approximately how much Glu is reabsorbed by this normal pt.

- a- 96mg/min
- b- 120mg/min
- c- 144 mg/min

(to assume GFR which will approximately = the clearance of cereatenin C of cereatenin = 96*1/0.8 = 120 ml/min , and because GLU is completely reabsorbed assuming that the pt. is normal so 120*120 = 14400 and that equals 144mg/min ma3 ta7weal elwe7dat :p)

13-assuming that

```
urinary flow rate =1.5L/day
urine [NH4]= 20 Meq/L
urine[HCO3-]= 4 Meq/L
titratable acid = 10 Meq/L
Calculate Bicarbonate gain?
a- 51 Meq/d
b- 39 Meq/d
c- 34 Meq/d
HCO3- gain = [urine NH4] + [titratable acid] - [urine HCO3]
= 20 * 1.5 + 10 * 1.5 - 4 * 1.5
= 39 Meq/d
```

- 14- Which of the following regarding acid-base balance is FALSE:
- a- During respiratory acidosis, CO2 increases and pH decreases.
- b- During compensation of respiratory alkalosis, CO2 increases, HCO3 increases and pH is increased.
- c- Metabolic acidosis can be due to vomiting.
- d- Chronic renal failure is associated with metabolic acidosis.
- e- During metabolic acidosis, HCO3 decreases as a compensatory mechanism. (as it is the cause of the case not compensation)
- 15- Where does renal vascular resistance reside the most:
- a- Afferent arterioles
- b- Efferent arterioles

- c- Glomerular capillaries
- d- Peritubular capillaries
- e- Renal vein

(most about 50 % in efferent then the afferent follows it)

16- regarding GFR all the following are true except:

a- constriction of efferent always increases GFR

(not always ,, it increases the GFR to a certain level of constriction then the GFR decreases)

- 17-minimal urinary output for anyone
 - a- it is always 300ml/m2 for body surface area / day
- 18 Under very high levels of ADH, where is water most absorbed?
 - a- Proximal Tubules
 - b- Late distal tubules
 - c- Early distal tubules
 - d- Collecting ducts
 - e- Collecting tubules

(Always two thirds of water is reabsorbed from proximal tubules even under the MAXIMUM effect of ADH)

- 19- increasing plasma concentration of PAH will:
 - a- can lead to increase PAH clearance
 - b- increase excretion rate (because of increasing filtered load)
 - c- increasing filtration fraction
 - d- increase reabsorption rate
 - e- increase production rate
- 20- hemodialysis can control all the following except:
 - **a- Hb concentration** (because no erythropoietin production by dialysis)
 - b- Acid-base balance
 - c- Plasma urea concentration
 - d- Plasma [K+]
 - e- Blood volume

Hemodialysis: A mechanism that is used to clear the body from waste products, by using Semi-permeable membrane that allows solutes to move down their Gradient (from blood compartment to the applied fluid compartment. Nevertheless, this mechanism can never control the {Hb}, as it washes out Erythropoietin out from the blood

- 21-Under normal physiological conditions and no exercise, compared to plasma, urine has:
 - a. Lower pH, lower osmolarity, higher K+
 - b. Higher pH, lower osmolarity, higher K+
 - c. Higher pH, higher osmolarity, higher K+
 - d. Lower pH, higher osmolarity and higher K
 - e. Equal pH, higher osmolarity, equal K+

Our urine is acidic(PH:4.5), concentrated, and as we excrete K in it we assume it contains

- 22- All of the following regarding clearance is correct EXCEPT:
- (a) It can rise, fall or stay the same if the relative solute concentration increases.
- (b) Glucose clearance is normally zero.
- (c) Inuline clearance is always constant regardless of plasma concentration.
- (d) If greater than GFR, always indicative of secretion.

23-) Regarding ECF which is not true:

- a. {cations} = {anions} (true due to electro-neutrality)
- b. Osmolarity predicted by $\{Na+\}$ (true $\{Na+\}*2.1$)
- c. Sodium is the major ECF cation
- d. Proteins are the major EC buffers. FALSE (INTRACELLULAR)
- e. Both ICF and ECF have the same osmolarity

THESE TOW PICTURES ARE VERY IMPORTANT TO UNDERSTAND AND MEMORIZE SRY FOR BAD EDITTING BUT THERE WAS NO TIME

Done by : Fa3el 5air :p :P good luck in your exam ^_^ ☺