Number of synapses

- Number of synapses
- Myelination

- Number of synapses
- Myelination
- Nerve axon size

Nociceptive endings/fibers

Proprioceptive endings/fibers

Somatosensory from The Face

(Trigeminal system)

 Carry all the sensation modalities from the face to the brain

PAIN

TERMINOLOGIE

TERM	DESCRIPTION
ALLODYNIA	PERCEPTION OF NON-NOXIOUS STIMULUS AS PAIN
ANALGESIA	ABSENCE OF PAIN PERCEPTION
ANESTHESIA	ABSENCE OF ALL SENSATIONS
ANESTHESIA DOLOROSA	PAIN IN AN AREA THAT LACKS SENSATION
DYSESTHESIA	UNPLEASANT SENSATION WITH OR WITHOUT STIMULUS
HYPOALGESIA	DIMINISHED RESPONSE TO NOXIOUS STIMULUS
HYPERALGESIA	INCREASED RESPONSE TO NOXIOUS STIMULUS
HYPERASTHESIA	INCREASED RESPONSE TO MILD STIMULUS
HYPOASTHESIA	REDUCED CUTANEOUS SENSATION
NEURALGIA	PAIN IN THE DISTRIBUTION OF A NERVE
PARASTHESIA	ABNORMAL SENSATION PERCEIVED WITHOUT AN APPARENT STIMULUS
RADICULOPATHY	FUNCTIONAL ABNORMALITY OF NERVE ROOTS

NEUROCHEMISTRY

PERIPHERY - injury produces release of endogenous chemicals:

- Bradykinin
- Histamine
- Serotonin
- Prostaglandins
- Substance P

ASCENDING PATHWAYS

- ANTEROLATERAL System
 - SPINOTHALAMIC TRACT
 - originating neurones in laminae I, V, VI, IX
 - Neospinothalamic tract
 - project to VPL, VPM
 - synapse and project to somatosensory cortex
 - Paleospinothalamic tract
 - from deeper laminae
 - to thalamus (other nuclei), midbrain, pontine and medullary reticular formation (Spinoreticular tract), periaqueductal grey (Spinomesencephalic tract), and hypothalmus (Spinohypothalamic tract)

ASCENDING PATHWAYS

Spinoreticular tract

- projects to medullary and pontine reticular formation
- involved in motivational and affective responses to pain
- ascend medially to spinothalamic tract

Spinomesencephalic tract

- project to caudal midbrain areas including periaqueductal gray
- Spinohypothalamic tract

DESCENDING CONTROL

 Studies in animals and man show anti-nociception and analgesia from stimulation or opioid administration to many supraspinal centres

CORTEX

- via corticospinal efferents
- terminations in superficial laminae
- may be inhibitory or excitatory and influence nonnoxious stimuli as well

HYPOTHALAMUS

- many afferents and efferents including NTS, PAG,
 LC, parabrachial nuclei, raphe nuclei
- widespread reciprocal innervation
- direct projection to lamina I
- may be bulbospinal relay for descending inhibition

MID BRAIN

- PERIAQUECDUCTAL GRAY (PAG)
 - surrounds cerebral aqueduct
 - extensive afferent and efferent projections
 - morphine and electrical stimulation produce potent antinociception
 - PAG descending inhibition is via NRM
 - EAA are neurotransmitters there
- LOCUS COERULEUS (LC)
 - noradrenergic containing neurones
 - adjacent to 4th ventricle
 - diffusely innnervates CNS at all levels
 - descending NAD fibres inhibit dorsal horn nociceptive activity and spinal nociceptive reflexes

Text Fig. 18-19