Protein Purification and Characterization Techniques

Nafith Abu Tarboush, DDS, MSc, PhD

natarboush@ju.edu.jo

www.facebook.com/natarboush

Extracting Pure Proteins from Cells

- Purification techniques focus mainly on size & charge
- The first step is homogenization (grinding, Potter– Elvejhem homogenizer, sonication, freezing and thawing, detergents)
- Differential centrifugation (600 g: unbroken cells & nuclei; 15,000 g: mitochondria; 100,000 g: ribosomes and membrane fragments)

Salting in & out

- Are proteins soluble? If yes, to which limit?
- Salt stabilizes the various charged groups on a protein molecule and enhance the polarity of water, thus attracting protein into the solution and enhancing the solubility of the protein
- Ammonium sulfate is the most common reagent to use at this step
- This technique is important but results are crude

Dialysis

- Principle of diffusion
- Concept of MW cut-off
- Pure vs. crude

Column Chromatography

- Greek chroma, "color," and graphein, "to write"
- Is it just for colourful proteins?
- Chromatography is based on two phases: stationary & mobile
- What are the different kinds?

Size-exclusion chromatography

Gel-filtration chromatography

- Separation on the basis of size (MW)
- Stationary (cross-linked gel particles): consist of one of two kinds of polymers; the 1st is a carb. polymer (ex. **dextran** or **agarose**); often referred to by Sephadex and Sepharose. The 2nd is based on **polyacrylamide** (Bio-Gel)
- Extent of crosslinking & pore size (exclusion limit)
- Convenient & MW estimate
- Each gel has range of sizes that separate linearly with the log of the molecular weight

Molecular-sieve chromatography

Affinity chromatography

It has specific binding properties

 The polymer (stationary) is covalently linked to a ligand that binds specifically to the desired protein

 The bound protein can be eluted by adding high conc. of the soluble ligand

 Protein-ligand interaction can also be disrupted with a change in pH or ionic strength

 Convenient & products are very pure (Antigen-antibody, His-tag, GST-Tag)

Ion-exchange chromatography

- Interaction based on net charge & is less specific
- Resin is either negatively charged (cation exchanger)
 or positively charged (anion exchanger)
- Buffer equilibration, exchange resin is bound to counterions. A cation-exchange resin is usually bound to Na+ or K+ ions, and an anion exchanger is usually bound to Clions
- Proteins mixture loading
- Elution (pH change or higher salt concentration)

Weakly acidic: carboxymethyl (CM) cellulose
$$-O-CH_2-C$$

$$O-CH_2CH_3$$

$$-OCH_2CH_3$$
 Weakly basic: diethylaminoethyl (DEAE)
$$-OCH_2CH_2-N \stackrel{+}{-}H$$
 cellulose
$$-OCH_2CH_3$$

Electrophoresis

- Based on the motion of charged particles in an electric field
- Macromolecules have differing mobilities based on their charge, shape, and size
- The most common medium is a polymer of agarose or acrylamide

Agarose vs. PAGE

- Agarose (nucleic acids), PAGE (proteins)
- In PAGE: SDS or NO-SDS $\{CH_3(CH_2)_{10}CH_2OSO_3Na^+\}$
- SDS completely denatures proteins (multi-subunit proteins)
- Acrylamide offers higher resistance to large molecules
- Shape and charge are approximately the same (sizes is the determining factor)
- Acrylamide without the SDS (native gel): study proteins in their native conformation (mobility is not an indication of size)

Protein sequencing - Edman Method

- Step 1: how much and which amino acids are involved
- Hydrolysis (heating + HCl) & Separation (ion-exchange chromatography or by high performance liquid chromatography, HPLC)

Protein sequencing - Edman Method

- Step 2: determining the identities of N- & C- termini ends of protein
- Necessary to determine if the protein has of 1 or 2 polypeptide chains
- Steps 3: cleavage into smaller fragments (Edman degradation)
 - 1) Enzymes- Trypsin, Chymotrypsin
 - 2) Chemical reagents- Cyanogen bromide CNBr

- Trypsin: Cleaves @ Cterminal of (+) charged side chains
- Chymotrypsin: Cleaves @ **C-terminal of aromatics**
- CNBr: Cleaves @ Cterminal of INTERNAL

 CH_3

CH₉ CH_9 **BrCN** CH₉ O 70% **HCOOH** $H_3^{\dagger}N$ — Peptide **Polypeptide** Peptide with C-terminal (C-terminal peptide) homoserine lactone Original protein H_3N^+ Met - Tyr $\frac{2}{5}$ Leu - Trp $\frac{2}{5}$ Gln - Phe $\frac{2}{5}$ Ser - COO Original C-terminal

Protein sequencing – prediction from DNA & RNA

- If the sequence of the gene is known, this is very easy
- If the sequence of the gene is unknown (newly isolated proteins)? Sequence a short segment, complementary RNA, isolate mRNA, PCR, gene sequencing

Immunoassays – Western blot "Protein Immunoblot"

Power source

Separate proteir

- From gel to a membrane (nitrocellulose or polyvinylidene difluoride, PVDF)
- Detection:
- Colorimetric: enzymes bound to 2nd Ab (horseradish peroxidase)
- Chemiluminescent: reporter 2nd Ab (CCD cameras)
- Radioactive detection: X-rays
- Fluorescent detection: fluorescently labeled probe

Immunoassays - ELISA

- Enzyme-Linked Immunosorbent Assay
- Detect & quantify substances (peptides, proteins, antibodies & hormones)
- Usually done in 96-well polystyrene plates (passively bind antibodies and proteins)
- Apllication:
- Screening (HIV, Hepatitis B&C)
- Detecting food allergens, such as milk, peanuts, walnuts, almonds, and eggs
- Hormones (HCG, LH, TSH, T3, T4)

(Green, positive)

(No color, negative)

