Reaction	Functional	With	Products	Catalyst	Notes	Example
Type	group					
Combustion	All	-	Complete: $CO_2 + H_2O$ Incomplete: $CO_2 + H_2O +$ CO + C	-		
Substitution	Alkanes	Halogens		UV light	For every halogen you want on the chain you must use one mole of the diatomic	
	Aromatics	Halogen	Halobenzene & Hydrogen halide	FeBr3 AlCl3		
		Alkyl Halide	Alkyl benzene & Hydrogen halide	AlCl3		

	Aromatics	Nitric Acid	Nitrobenzene & Water	Sulfuric Acid		
Substitution	Alcohols	Hydrogen halide	Alkyl halide & Water	ZnCl2	Lucas test – can be used as a qualitative test to determine is an alcohol is primary, secondary, or tertiary When –OH is on the end it is most soluble (primary) and decreases in solubility as it becomes secondary and tertiary Alpha carbon – carbon with functional group	
	Ethers	2 Binary Acids	2 Alkyl halides & Water	Heat		
	Amines (Ammonia)	Alkyl halides	Amine & Hydrogen halide	-		

	Alkenes	Hydrogen	Alkane	Pt	
	Tincico	Trydrogen	Tinane		
		Halogens	Haloalkane (2	CCl4	
			halogen atoms)		!
					1
		*Hydrogen	Haloalkane (1	_	
		Halide	halogen atom)		
		Tance	manogen acomy		
Addition					
Audition.					
		1.7777		110004	
		*Water	Alcohol	H2SO4	
				+ 100 C	
	Alkynes	Same as alkene	es but 2 moles of each r	eactant to saturate triple bonds	
				•	

Addition	Aldehydes & Ketones	Hydrogen (reduction)	Alcohol	Pt + 101MPa	Aldehyde makes primary alcohol Ketone makes secondary alcohol
Elimination	Alcohols	-	Alkene & Water		
	Alkyl Halides	Hydroxide ion	Alkene + Water + Halide ion	-	
Oxidation	Alkenes	-	"diol" (each C in double bond gets an –OH)	Ox Agent: MnO4 & Cr2O7-2	 Colour change Used to qualitatively test presence of aldehyde or ketone Dichromate (orange) → Chromium +3 (green) Permanganate (purple)
Oxidation	Alcohols	-	Depends on type of alcohol: 1. Primary → aldehyde → carboxylic acid 2. Secondary → Ketone 3. Tertiary → no rxn	Ox Agent: MnO4 & Cr2O7-2	→ Manganese (IV) oxide (brown)

Oxidation	Aldehydes		Carboxylic Acid	Ox Agent: *MnO4-: purple → brown *Cr2O7-2: orange → green *Fehling's solution (Copper II solution): blue → orange/brown ppt *Tollen's Reagent (silver ions in ammonia): clear → black precipitate with a silver mirror coating on the glass wear (known as silver mirror test) *If colour stays the same that means it is a ketone. If colour changes,		
	Alcohols	Alcohol	Ether and Water	aldehyde. H2SO4 + 140 C	Carboxylic acid will lose –OH and alcohol will lose H	
Condensation		Carboxylic Acid	Ester and Water	H2SO4 + Heat		

			T		
Condensation	Amines	Carboxylic Acid	Amide and Water	H2SO4 + Heat	
	Esters	Reversible: Water	Alcohol and Carboxylic Acid	H2SO4 + Heat	
Hydrolysis		Irreversible: Water and Base	Alcohol, Carboxylic acid, Metal ion	-	
	Amide	Water	Amine and Carboxylic Acid	H2SO4 + Heat	