

Resting Membrane Potential & Goldman Equation

$$V_{m} = \frac{RT}{F} \log \frac{P_{K}[K^{+}]_{o} + P_{Na}[Na^{+}]_{o} + P_{cl}[Cl^{-}]_{o}}{P_{K}[K^{+}]_{i} + P_{Na}[Na^{+}]_{i} + P_{cl}[Cl^{-}]_{i}}$$

- P = permeability •
- at rest: P_{K} : P_{Na} : $P_{CI} = 1.0 : 0.04 : 0.45 0.45$
- Net potential movement for all ions
 - known V_m:Can predict direction of movement of any ion ~

- hyperkalemia :
- weakness, ascending paralysis,
- If untreated cardiac arrhythmias
- Hypokalemia: serum K+ <3.5 mEq/L
 Myopathies (Myotonia)

 hyperkalemia: serum K+ >5 mEq/L, moderate (6 to 7 mEq/L) and severe (>7 mEq/L)

Hypokalemia :

Weakness, fatigue, motor paralysis Myopathies (**Myotonia**)

Hyponatremia

- Hyponatremia
- lethergy, confusion, weakness and muscle cramps, nausea and vomiting >>>> coma >>>>seizures
- Tt
- only 1 mlmol/L/hour
- Osmotic demyelination syndrome (central pontine myelinolysis)

Hyponatremia

- lethergy, confusion, weakness and muscle cramps, nausea and vomiting >>>> coma >>>>seizures
- Tt
- only 1 mlmol/L/hour
- Osmotic demyelination syndrome (central pontine myelinolysis)

Hypernatremia

- Hypernatremia
- nausea, and vomiting, altered mental status, confusion, neuromuscular excitability and hyperreflexia, irritability, seizures, and even coma or death.
- Tt
- 0.45% sodium chloride
- brain edema or hemorrhage, potentially seizures, permanent brain damage, or death

Hypernatremia

- nausea, and vomiting, altered mental status, confusion, neuromuscular excitability and hyperreflexia, irritability, seizures, and even coma or death.
- Tt
- 0.45% sodium chloride
- brain edema or hemorrhage, potentially seizures, permanent brain damage, or death

Hypercalcemia

Hypercalcemia

Headache, and lethargy. anxiety, depression, and cognitive dysfunction, insomnia, coma

Hypocalcemia

Hypocalcemia

 The hallmark is neuromuscular irritability and tetany

(Trousseau's sign & Chvostek's sign)

 Irritability, hyperreflexia, Seizures, psychosis and hallucination

Trousseau's Sign

Hypocalcemia

 The hallmark is neuromuscular irritability and tetany

(Trousseau's sign & Chvostek's sign)

 Irritability, hyperreflexia, Seizures, psychosis and hallucination

Trousseau's Sign

The Action Potential (excitability changes)

The Action Potential

The Action Potential

The Action Potential

Action potential of cardiac muscles

Grigoriy Ikonnikov and Eric Wong

Time

Time

Channelopathies

Epilepsy and migraine

	200	cps, a	na migi												
	88		Na+	K+	Ca ²⁺	GABA	Nicotinic								
	Ep	oilepsy	SCN1A SCN1B SCN2A	KCNQ2 KCNQ3 KCNMA1	CACNA1H	GABRA1 GABRB3 GABRG2	CHRNA2 CHNRA4 CHRNB2								
	M	igraine	SCN1A		CACNA1A		VII		1	7					
						(2)	1	-	1	-1	1				
			Ca ²⁺	CI-	Nicotinia	(A)	S								
Myasthenia	Na+	rders K+	Ca ²⁺	Cl-	Nicotinia CHRNA1 CHRNB1 CHRNG CHRND	(F)				Cere	ebellar a	ntaxia	a and e	excessive	startle
Myasthenia Fetal akinesia	Na ⁺		Ca ²⁺		CHRNA1 CHRNB1 CHRNG	(S)				Cere	ebellar a		a and e K+	excessive Ca ²⁺	startle Glycin
Myasthenia Fetal akinesia Myotonia	Na+	K+	Ca ²⁺	CLCN1	CHRNA1 CHRNB1 CHRNG CHRND					Ata	ebellar a				Glycin

Ataxia is typically defined as the presence of abnormal, uncoordinated movements

 $\label{table 1.} \textbf{Table 1. The neurological channel opathies}$

		Gene	Channel subunit	Disease
CNS	Sodium channels	SCN1A	α subunit of Nav1.1	Epilepsy, migraine
		SCN1B	β1	Epilepsy
		SCN2A	α subunit of Nav1.2	Epilepsy
	Potassium channels	KCNQ2	Kv7.2	Epilepsy
		KCNQ3	Kv7.3	Epilepsy
		KCNMA1	BK	Epilepsy with dyskinesia
		KCNA1	Kv1.1	Episodic ataxia
		KCNC3	Kv3.3	Ataxia
	Calcium channels	CACNA1H	α 1H subunit of Cav3.2	Epilepsy
		CACNA1A	α 1A subunit of Cav2.1	Episodic or progressive ataxia,
				migraine, epilepsy
	$GABA_A$ receptors	GABRA1	α1	Epilepsy
		GABRB3	β3	Epilepsy
		GABRG2	γ2	Epilepsy
	Nicotinic ACh receptors	CHRNA2	α2	Epilepsy
		CHNRA4	α4	Epilepsy
		CHRNB2	β2	Epilepsy
	Glycine receptors	GLRA1	α1	Hyperekplexia
		GLRB	β	Hyperekplexia
Peripheral nerve	Sodium channel	SCN9A	α subunit of Nav1.7	Excessive pain, insensitivity to pain
Muscle	Sodium channel	SCN4A	α subunit of Nav1.4	Periodic paralysis, myotonia
	Potassium channels	KCNJ2	Kir2.1	Periodic paralysis
		KCNJ18	Kir2.6	Periodic paralysis
	Calcium channel	CACNA1S	α1S subunit of CaV1.1	Periodic paralysis
	Chloride channel	CLCN1	CLC-1	Myotonia
	Nicotinic ACh receptors	CHRNA1	α1	Congenital myasthenic syndromes
		CHRNB1	<i>β</i> 1	Congenital myasthenic syndromes
		CHRNG	γ	Congenital myasthenic syndromes
		CHRND	δ	Congenital myasthenic syndromes
		CHRNE	ε	Congenital myasthenic syndromes

Table 2 Classification of neurological channelopathies according to channel

Channel	Muscle	Gene	CNS	Gene
Sodium channel	Hypokalaemic periodic paralysis	SCN4A	Generalised epilepsy with febrile seizures plus syndrome (GEFS+), severe myodonic epilepsy of infancy	SCN1A SCN1B SCN2A
	Hyperkalaemic periodic paralysis	SCN4A		
	Paramyotonia congenita Potassium aggravated myotonia	SCN4A SCN4A		
Chloride channel	Myotonia congenita: Thomsen's, Becker's	CLCN1		
Calcium channel	Hypokalaemic periodic	CACNA1S	Episodic ataxia type 2	CACNA1
	paralysis Malignant hyperthermia	CACNA1S CACNL2A	Familial hemiplegic migraine Childhood absence epilepsy	CACNA1
Potassium channel	Andersen's syndrome Hypokalaemic periodic paralysis	KCNJ2 KCNE3	Episodic ataxia type 1 Benign familial neonatal convulsions	KCNA1 KCNQ2 KCNQ3
	Hyperkalaemic periodic paralysis	KCNE3	neonalal convolutions	Kertas
Ryanodine receptor	Malignant hyperthermia Central core disease	RYR1 RYR1		
Glycine receptor			Hyperekplexia	GLRA1
Acetylcholine receptor			Autosomal dominant frontal lobe epilepsy	CHRNB2 CHRNA4
GABA receptor			GEFS+, juvenile myodonic epilepsy	GABRG2

Pages 84 & 85 in
 Neuroscience 3rd edition by
 Dale *Purves*

Ion Channel Neurotoxins

Synapses and Neurotransmitters

• Synapse:

• Synapse: A <u>specialized</u> site of <u>contact</u>, and <u>transmission of information</u> between a neuron

and an effector cell

Anterior Motor Neuron

Figure 45-5

Electrical synapse

Electrical synapse

Chemical synapse

Chemical synapse

Neurotransmitter:
is a messenger of
neurologic
information from
one cell to another.

Synaptic Transmission

Action of Neurotransmitter on Postsynaptic Neuron

- postsynaptic membrane contains receptor proteins for the transmitter released from the presynaptic terminal.
- The effect of neurotransmitter on the post synaptic neuron depend on the type of the receptor

Action of Neurotransmitter on Postsynaptic Neuron

- Two types of receptors
 - Ion channels receptors

Action of Neurotransmitter on Postsynaptic Neuron

- Two types of receptors
 - Ion channels receptors
 - Second messenger receptors

Ion Channels receptors

- transmitters that open sodium channels excite the postsynaptic neuron.
- transmitters that open chloride channels inhibit the postsynaptic neuron.
- transmitters that open potassium channels inhibit the postsynaptic neuron.

Seconded messenger receptors (as example G-protein)

- 1. Opening specific ion channels
- 2. Activation of cAMP or cGMP
- 3. Activation of one or more intracellular enzymes
- 4. Activation of gene transcription.

G-Protein-Coupled Receptors and Effectors

- GPCR Effector Systems (Cont'd)
 - Push-pull method (e.g., different G proteins for stimulating or inhibiting adenylyl cyclase)

G-Protein-Coupled Receptors and Effectors

- GPCR Effector Systems (Cont'd)
 - Some cascades split
 - -G-protein activates PLC→ generates DAG and IP3→ activate different effectors

G-Protein-Coupled Receptors and Effectors

- GPCR Effector Systems (Cont'd)
 - Signal amplification

