Neuromodulators

Dopamine

Norepinephrine

Norepinephrine receptors

• α family

• B family

Norepinephrine receptors

- α family
- B family

Current Nomenclature of Adrenergic Receptor Subtypes

Subtype Differentiation

Subtype Differentiation

- **β1-** The dominant receptor in heart and adipose tissue equally sensitive to epinephrine and norepinephrine.
- **β2-** Responsible for relaxation of vascular, uterine, and airway smooth muscle. Less sensitive to NE as compared to E.
- **β3-** Insensitive to commonly used β -adrenergic receptor antagonists. Previously referred to as the "<u>atypical</u>" β -adrenergic receptor.

(The Biochemical Basis of Neuropharmacology, 2003)

- **α1-** Postsynaptic. 1A and 1B subtypes defined by their differential affinity for agents such as WB4101 & phentolamine. No 1C subtype.
- **α2-** Postsynaptic & **presynaptic**. First thought to be exclusively presynaptic. 2A & 2B subtypes differentiated by their affinity for agents such as prazosin & oxymetazoline.

Noradrenergi (NE) synapse

Norepinephrine Pathway

Norepinephrine Pathway

- LC noradrenergic system is highly responsive external stimuli → attention
- Learning/memory and seep/wake cycle
- Anxiety and stress response
- In FRONTAL CORTEX:
 - Mood regulation → Hypofunction of pathway → Depression

NE: Locus Ceruleus -> FRONTAL CTX

q2 postsynaptic receptor
In FRONTAL CORTEX:

 Attention, working memory, information processing.

NE: Locus Ceruleus -> FRONTAL CTX

81 postsynaptic receptor In FRONTAL CORTEX:

- Mood regulation.
- Hypofunction of pathway:
 - Depression

NE: Locus Ceruleus -> LIMBIC CTX

- Emotions
- Energy level
- Psychomotor agitation
- Psychomotor retardation

Serotonin

Serotonin synthesis

Serotonin Receptors

Serotonin Receptors

Almost 17 type of receptor

Wide spread

Almost 17 type of receptor

Wide spread

mood, sleep, sexuality, impulsivity, aggression, stress, drug abuse

Almost 17 type of receptor

Wide spread

Serotonin system *dysfunction* involve in :
Depression, Schizophrenia,
OCD, Eating Disorders, Autism

Antipsychotics

Clozapine
Risperidone
Olanzapine

Potent antagonist actions at 5-HT_{2A} receptors, in addition to D₂ antagonism

Anxiolytics

Buspirone Gepirone

Partial 5-HT_{1A} agonists Effective for treating GAD, OCD

Antiemetics

Ondansetron Granisetron

5-HT₃ antagonist used for Minimizing chemotherapy-induce nausea

Anti-migraine
Sumatriat

Sumatriptan >

5-HT₁ agonist, exerts some Selectivity on 5-HT_{1D} receptors

Selective Serotonin Reuptake Inhibitors

Divergence and Convergence in Neurotransmitter Systems

Divergence

- One transmitter activates more than one receptor subtype > greater postsynaptic response
- Convergence
 - Different transmitters converge to affect same effector system

Monoamines & Behavior

Newer Antidepressants and Mood Stabilizers

I. Serotonin-Norepinephrine reuptake inhibitor Venlafaxine, Milnacipran, Duloxetine

II. Serotonin Receptor Antagonist/Reuptake Inhibitor (SARIs) Nefazodone, Trazodone

SARI (nefazodone) actions at 5HT synapses

Receptor Action 5-HT1A Antagonist 5-HT1B Antagonist 5-HT1D Antagonist 5-HT2A Inverse agonist 5-HT2B Inverse agonist 5-HT2C Inverse agonist 5-HT5A Antagonist **Antagonist** 5-HT6 Irreversible antagonist[2] 5-HT7 D1 **Antagonist** D2 **Antagonist Antagonist** D2S **Antagonist** D₂L D3 Inverse agonist **Antagonist** D4 D5 **Antagonist Antagonist** α1Α **Antagonist** α1Β **Antagonist** α2Α **Antagonist** α2B

Antagonist

α2C

Neuropeptides

• Neuropeptides are peptides released by neurons as intercellular messengers.

• May co-localize with other classical transmitters in same neuron

• All neuropeptide receptors are G-protein linked receptors

- Function of Neuropeptides:
- -- They can do just about everything

Neuropeptides

• Neuropeptides are peptides released by neurons as intercellular messengers.

• May co-localize with other classical transmitters in same neuron

• All neuropeptide receptors are G-protein linked receptors

- Function of Neuropeptides:
- -- They can do just about everything

Neuropeptides synthesis

Usually are more potent than classical neurotransmitter: lower concentration and longer effect

Example of Neuropeptides

Opioids

- 1) Enkephalin delta (δ)
- 2) Endorphins <u>mu (μ)</u>
- 3) Dynorphin kappa (κ)

Example of Neuropeptides

1) enkephalin

Opioid receptor : δ receptor

Enkephalin pathway

Enkephalin pathway

Function: analgesia by block the pain before it is relayed to the brain

Example of Neuropeptides

2) Endorphins

Endorphin location and function

Cerebral cortex - influence mood, ephoria and emotional aspect of pain

Thalamus – influence poorly localized deep pain

Midbrain (periaqueductal grey matter) - modulation of pain

Brain stem - respiratory control, cough reflex, nausea/vomiting etc.

Hypothalamus - temperature and neuro-endocrine function

Non-traditional Neurotransmitters

Nitric Oxide

Nitric Oxide

Nitric Oxide (NO)

- NO is a diffusible bioactive gas produced from arginine by nitric oxide synthase
- NO is widely distributed in brain and peripheral tissues
- NO is not stored and synthesis is regulated by the enzyme activity

Nitric Oxide

- Regulation of blood flow Neuron-derived NO plays a major role in the regulation of blood flow, vasodilation and increased blood flow
- At the cellular level, NO can changes intracellular metabolic functions that modify neuronal excitability and influence neurotransmitter release
- In the brain, NO acts as a neuromodulator to control behavioral activity, influence memory formation, and intensify responses to painful stimuli
- May be responsible for glutamate induced neurotoxicity

Brain-derived neurotrophic factor "BDNF"

Tyrosine kinase Receptor activation:

Our axons can be >1 m in length---how does the neurotrophin/receptor complex signal to the neuronal cell body?

Transport of NGF

NGF signal can be transduced at the tips of growing neuronal processes

Sympathetic neurons were placed in a TC system that allowed the somas and neurites to be bathed in different media.

L: Most neurons die when grown without NGF for 30 hr.

R: Neurons can be kept alive by adding NGF only to the compartments with growing neurites.

In both cases, anti-NGF prevented TrkA activation in the central compartment.

Memory

Long term potentiation LTP, and LTD

Spines

- Spines
- Long term potentiation LTP and LTD
- The glutamate receptor (NMDA)

- Spines
- Long term potentiation LTP and LTD
- The glutamate receptor (NMDA)
- neuromodulators "NO, 5HT, norepinephrine"